Suppr超能文献

体外抗增殖试验统计特征对临床药效学研究的意义。

Implications for clinical pharmacodynamic studies of the statistical characterization of an in vitro antiproliferation assay.

作者信息

Levasseur L M, Faessel H, Slocum H K, Greco W R

机构信息

Department of Biomathematics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.

出版信息

J Pharmacokinet Biopharm. 1998 Dec;26(6):717-33. doi: 10.1023/a:1020755124451.

Abstract

Modeling of nonlinear pharmacodynamic (PD) relationships necessitates the utilization of a weighting function in order to compensate for the heteroscedasticity. The structure of the variance was studied for concentration-effect data generated in an in vitro 96-well plate cell growth inhibition assay, where data are numerous (480 data points per experiment) and replication is easy. From the five candidate models that were considered, the power function S2Y = phi 2Y phi 3, where Y is the sample mean and S2Y is the sample variance, was shown to be the most appropriate to describe the nonuniformity of the variance along the range of measured effect for 253 sets of (Y; S2Y) data. The Hill model was fit to the concentration-effect data with weighted nonlinear regression, where the weights were equal to the reciprocal of the predicted variance. The examination of the distribution of the 253 sets of parameters of the PD model showed that IC50 was lognormally distributed whereas the distribution of gamma was normal. The characterization of the appropriate variance function and concentration-effect function in a simple in vitro experimental setting with a large number of experiments, with each experiment including a large number of data points, will be useful for guiding similar in vitro concentration-effect studies where data are plentiful and for guiding PD modeling in complex clinical settings in which extensive data for model characterization is impossible to obtain.

摘要

非线性药效学(PD)关系的建模需要使用加权函数来补偿异方差性。研究了在体外96孔板细胞生长抑制试验中产生的浓度-效应数据的方差结构,该试验数据量大(每个实验有480个数据点)且易于重复。在考虑的五个候选模型中,幂函数S2Y = phi 2Y phi 3(其中Y是样本均值,S2Y是样本方差)被证明最适合描述253组(Y;S2Y)数据在测量效应范围内方差的不均匀性。用加权非线性回归将希尔模型拟合到浓度-效应数据,权重等于预测方差的倒数。对PD模型的253组参数分布的检验表明,IC50呈对数正态分布,而γ的分布呈正态分布。在一个简单的体外实验环境中,通过大量实验(每个实验包含大量数据点)来表征合适的方差函数和浓度-效应函数,将有助于指导类似的体外浓度-效应研究(在这些研究中数据丰富),也有助于指导复杂临床环境中的PD建模(在这种环境中无法获得用于模型表征的大量数据)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验