Vyavahare N, Ogle M, Schoen F J, Levy R J
Department of Pediatric, Division of Cardiology, Joseph Stokes, Jr. Research Institute, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.
Am J Pathol. 1999 Sep;155(3):973-82. doi: 10.1016/S0002-9440(10)65197-8.
Elastin, an abundant structural protein present in the arterial wall, is prone to calcification in a number of disease processes including porcine bioprosthetic heart valve calcification and atherosclerosis. The mechanisms of elastin calcification are not completely elucidated. In the present work, we demonstrated calcification of purified elastin in rat subdermal implants (Ca(2+) = 89.73 +/- 9.84 microgram/mg after 21 days versus control, unimplanted Ca(2+) = 0.16 +/- 0.04 microgram/mg). X-ray diffraction analysis along with resolution enhanced FTIR spectroscopy demonstrated the mineral phase to be a poorly crystalline hydroxyapatite. We investigated the time course of calcification, the effect of glutaraldehyde crosslinking on calcification, and mechanisms of inhibition of elastin calcification by pretreatment with aluminum chloride (AlCl(3)). Glutaraldehyde pretreatment did not affect calcification (Ca(2+) = 89.06 +/- 17.93 microgram/mg for glutaraldehyde crosslinked elastin versus Ca(2+) = 89.73 +/- 9.84 microgram/mg for uncrosslinked elastin). This may be explained by radioactive ((3)H) glutaraldehyde studies showing very low reactivity between glutaraldehyde and elastin. Our results further demonstrated that AlCl(3) pretreatment of elastin led to complete inhibition of elastin calcification using 21-day rat subdermal implants, irrespective of glutaraldehyde crosslinking (Ca(2+) = 0.73-2.15 microgram/mg for AlCl(3) pretreated elastin versus 89.73 +/- 9.84 for untreated elastin). The AlCl(3) pretreatment caused irreversible binding of aluminum ions to elastin, as assessed by atomic emission spectroscopy. Moreover, aluminum ion binding altered the spatial configuration of elastin as shown by circular dichroism (CD), Fourier transform infrared (FTIR), and (13)C nuclear magnetic resonance (NMR) spectroscopy studies, suggesting a net structural change including a reduction in the extent of beta sheet structures and an increase in coil-turn conformations. Thus, it is concluded that purified elastin calcifies in rat subdermal implants, and that the AlCl(3)-pretreated elastin completely resists calcification due to irreversible aluminum ion binding and subsequent structural alterations caused by AlCl(3).
弹性蛋白是动脉壁中一种丰富的结构蛋白,在包括猪生物人工心脏瓣膜钙化和动脉粥样硬化在内的多种疾病过程中容易发生钙化。弹性蛋白钙化的机制尚未完全阐明。在本研究中,我们证明了纯化的弹性蛋白在大鼠皮下植入物中会发生钙化(21天后,Ca(2+) = 89.73 +/- 9.84微克/毫克,而未植入的对照组Ca(2+) = 0.16 +/- 0.04微克/毫克)。X射线衍射分析以及分辨率增强的傅里叶变换红外光谱表明,矿物质相为结晶度较差的羟基磷灰石。我们研究了钙化的时间进程、戊二醛交联对钙化的影响以及用氯化铝(AlCl(3))预处理抑制弹性蛋白钙化的机制。戊二醛预处理不影响钙化(戊二醛交联的弹性蛋白Ca(2+) = 89.06 +/- 17.93微克/毫克,未交联的弹性蛋白Ca(2+) = 89.73 +/- 9.84微克/毫克)。这可以通过放射性((3)H)戊二醛研究来解释,该研究表明戊二醛与弹性蛋白之间的反应性非常低。我们的结果进一步表明,使用21天的大鼠皮下植入物,AlCl(3)预处理弹性蛋白可导致弹性蛋白钙化完全受到抑制,无论是否进行戊二醛交联(AlCl(3)预处理的弹性蛋白Ca(2+) = 0.73 - 2.15微克/毫克,未处理的弹性蛋白Ca(2+) = 89.73 +/- 9.84)。通过原子发射光谱评估,AlCl(3)预处理导致铝离子与弹性蛋白不可逆结合。此外,如圆二色性(CD)、傅里叶变换红外(FTIR)和(13)C核磁共振(NMR)光谱研究所示,铝离子结合改变了弹性蛋白的空间构型,表明发生了净结构变化,包括β折叠结构程度的降低和卷曲 - 转角构象的增加。因此,得出结论:纯化的弹性蛋白在大鼠皮下植入物中会钙化,并且AlCl(3)预处理的弹性蛋白由于不可逆的铝离子结合以及随后由AlCl(3)引起的结构改变而完全抵抗钙化。