Kolpashchikov D M, Zakharenko A L, Dezhurov S V, Rechkunova N I, Khodyreva S N, Degtiarev S Kh, Litvak V V, Lavrik O I
Novosibirsk Institute of Bioorganic Chemistry, Siberian Division, Russian Academy of Sciences, Russia.
Bioorg Khim. 1999 Feb;25(2):129-36.
Arylazides N-(4-azido-2,5-difluoro-3-chloropyridinyl-6)-beta-alanine (Ia) and N-(4-azido-2,5-difluoro-3-chloropyridinyl-6)-glycine (Ib) were synthesized and covalently attached to 5-(3-aminopropenyl-1)-dUTP through the amino group to give 5'-triphosphate (IIa) and 5'-triphosphate (IIb). The resulting azides were subjected to photolysis in aqueous solution. The spectral and photochemical characteristics of azides (I) and (II) imply that their use for the modification of biopolymers holds promise. Compounds (IIa, b) effectively substituted dTTP in DNA polymerization catalyzed by thermostable DNA polymerase from Thermus thermophilus B-35 (Tte DNA polymerase). Photoaffinity modification of Tte DNA polymerase was carried out by dTTP analogues (IIa, b) and by earlier obtained 5-[N-(5-azido-2-nitrobenzoyl)-trans-3-aminopropenyl-1]deoxyuridine 5'-triphosphate (III) and 5-[N-(4-azido-2,3,5,6-tetrafluorobenzyol)-trans-3- aminopropenyl-1]deoxyuridine 5'-triphosphate (IV) using two variants of labeling. All four dTTP analogues were shown to modify Tte DNA polymerase.