Tsuzuki W, Kitamura Y, Suzuki T, Mase T
National Food Research Institute, Ministry of Agriculture, Forestry, and Fisheries, Ibaraki, Japan.
Biosci Biotechnol Biochem. 1999 Aug;63(8):1467-70. doi: 10.1271/bbb.63.1467.
To establish the utility of lipase as a biocatalyst, the effects of glucose on the hydrolysis activities of lipase were investigated. Among 13 kinds of lipase from microorganisms, 6 lipases were inhibited in hydrolysis up to 50% of the original activities by 10 mM glucose. The activities of other microbial lipases and 2 kind of porcine pancreatic lipases were not affected by the addition of glucose. Six lipases that were sensitive to glucose were modified by a synthetic detergent. After they were converted to modified lipases, they were not inhibited by glucose. Even at 20 mM glucose, each modified lipase retained more than 95% activity compared with that in the absence of glucose. In the modified lipase, the detergent attached to the lipase molecule would disturb the access of glucose to the enzyme. To detect the interaction between lipase and glucose, the fluorescence of tryptophan was traced. The fluorescence intensities of lipases that were inhibited by glucose depended on the concentration of glucose, suggesting that glucose induced some structural change in the lipase molecule.