Zhang Y L, Hollfelder F, Gordon S J, Chen L, Keng Y F, Wu L, Herschlag D, Zhang Z Y
Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
Biochemistry. 1999 Sep 14;38(37):12111-23. doi: 10.1021/bi990836i.
The hydrolysis of O-arylphosphorothioates by protein-tyrosine phosphatases (PTPases) was studied with the aim of providing a mechanistic framework for the reactions of this important class of substrate analogues. O-arylphosphorothioates are hydrolyzed 2 to 3 orders of magnitude slower than O-aryl phosphates by PTPases. This is in contrast to the solution reaction where phosphorothioates display 10-60-fold higher reactivity than the corresponding oxygen analogues. Kinetic analyses suggest that PTPases utilize the same active site and similar kinetic and chemical mechanisms for the hydrolysis of O-arylphosphorothioates and O-aryl phosphates. Thio substitution has no effect on the affinity of substrate or product for the PTPases. Bronsted analyses suggest that like the PTPase-catalyzed phosphoryl transfer reaction the transition state for the PTPase-catalyzed thiophosphoryl transfer is highly dissociative, similar to that of the corresponding solution reaction. The side chain of the active-site Arg residue forms a bidentate hydrogen bond with two of the terminal phosphate oxygens in the ground state and two of the equatorial oxygens in a transition state analog complex with vanadate [Denu et al. (1996) Proc. Natl. Acad. Sci. USA 93, 2493-2498; Zhang, M. et al. (1997) Biochemistry 36, 15-23; Pannifer et al. (1998) J. Biol. Chem. 273, 10454-10462]. Replacement of the active-site Arg409 in the Yersinia PTPase by a Lys reduces the thio effect by 54-fold, consistent with direct interaction and demonstrating strong energetic coupling between Arg409 and the phosphoryl oxygens in the transition state. These results suggest that the large thio effect observed in the PTPase reaction is the result of inability to achieve precise transition state complementarity in the enzyme active site with the larger sulfur substitution.
为了给这类重要的底物类似物的反应提供一个机制框架,研究了蛋白质酪氨酸磷酸酶(PTPases)对O-芳基硫代磷酸酯的水解作用。与O-芳基磷酸酯相比,PTPases对O-芳基硫代磷酸酯的水解速度要慢2到3个数量级。这与溶液反应形成对比,在溶液反应中硫代磷酸酯的反应活性比相应的氧类似物高10 - 60倍。动力学分析表明,PTPases对O-芳基硫代磷酸酯和O-芳基磷酸酯的水解利用相同的活性位点以及相似的动力学和化学机制。硫取代对底物或产物与PTPases的亲和力没有影响。布仑斯惕分析表明,与PTPase催化的磷酰基转移反应一样,PTPase催化的硫代磷酰基转移的过渡态高度离解,类似于相应的溶液反应。活性位点精氨酸残基的侧链在基态下与两个末端磷酸氧形成双齿氢键,在与钒酸盐形成的过渡态类似物复合物中与两个赤道面氧形成双齿氢键[德努等人(1996年)《美国国家科学院院刊》93卷,2493 - 2498页;张,M.等人(1997年)《生物化学》36卷,15 - 23页;潘尼弗等人(1998年)《生物化学杂志》273卷,10454 - 10462页]。用赖氨酸取代耶尔森氏菌PTPase中的活性位点精氨酸409会使硫效应降低54倍,这与直接相互作用一致,并证明了精氨酸409与过渡态中的磷酰氧之间存在强烈的能量耦合。这些结果表明,在PTPase反应中观察到的大硫效应是由于酶活性位点无法与较大的硫取代实现精确的过渡态互补。