Zhao Y, Wu L, Noh S J, Guan K L, Zhang Z Y
Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
J Biol Chem. 1998 Mar 6;273(10):5484-92. doi: 10.1074/jbc.273.10.5484.
Protein-tyrosine phosphatases (PTPases) catalysis involves a cysteinyl phosphate intermediate, in which the phosphoryl group cannot be transferred to nucleophiles other than water. The dual specificity phosphatases and the low molecular weight phosphatases utilize the same chemical mechanism for catalysis and contain the same (H/V)C(X)5R(S/T) signature motif present in PTPases. Interestingly, the latter two groups of phosphatases do catalyze phosphoryl transfers to alcohols in addition to water. Unique to the PTPase family are two invariant Gln residues which are located at the active site. Mutations at Gln-446 (and to a much smaller extent Gln-450) to Ala, Asn, or Met (but not Glu) residues disrupt a bifurcated hydrogen bond between the side chain of Gln-446 and the nucleophilic water and confer phosphotransferase activity to the Yersinia PTPase. Thus, the conserved Gln-446 residue is responsible for maintaining PTPases' strict hydrolytic activity and for preventing the PTPases from acting as kinases to phosphorylate undesirable substrates. This explains why phosphoryl transfer from the phosphoenzyme intermediate in PTPases can only occur to water and not to other nucleophilic acceptors. Detailed kinetic analyses also suggest roles for Gln-446 and Gln-450 in PTPase catalysis. Although Gln-446 is not essential for the phosphoenzyme formation step, it plays an important role during the hydrolysis of the intermediate by sequestering and positioning the nucleophilic water in the active site for an in-line attack on the phosphorus atom of the cysteinyl phosphate intermediate. Gln-450 interacts through a bound water molecule with the phosphoryl moiety and may play a role for the precise alignment of active site residues, which are important for substrate binding and transition state stabilization for both of the chemical steps.
蛋白质酪氨酸磷酸酶(PTPases)的催化作用涉及一个半胱氨酰磷酸中间体,其中磷酸基团不能转移到除水以外的亲核试剂上。双特异性磷酸酶和低分子量磷酸酶利用相同的化学催化机制,并且含有与PTPases中相同的(H/V)C(X)5R(S/T)特征基序。有趣的是,后两组磷酸酶除了催化磷酸基团转移到水上之外,还确实能催化磷酸基团转移到醇类上。PTPase家族独有的是位于活性位点的两个不变的Gln残基。将Gln - 446(在较小程度上还有Gln - 450)突变为Ala、Asn或Met(但不是Glu)残基,会破坏Gln - 446侧链与亲核水之间的分叉氢键,并赋予耶尔森氏菌PTPase磷酸转移酶活性。因此,保守的Gln - 446残基负责维持PTPases严格的水解活性,并防止PTPases作为激酶对不期望的底物进行磷酸化。这就解释了为什么PTPases中磷酸酶中间体的磷酸基团转移只能发生在水上,而不能发生在其他亲核受体上。详细的动力学分析也表明Gln - 446和Gln - 450在PTPase催化中所起的作用。虽然Gln - 446对于磷酸酶中间体的形成步骤不是必需的,但它在中间体水解过程中起着重要作用,通过在活性位点隔离并定位亲核水,以便对半胱氨酰磷酸中间体的磷原子进行直线攻击。Gln - 450通过一个结合水分子与磷酸基团相互作用,可能对活性位点残基的精确排列起作用,这对于两个化学步骤的底物结合和过渡态稳定都很重要。