Suppr超能文献

盆底肌肉表面肌电图。可靠性及临床预测效度。

Pelvic floor muscle surface electromyography. Reliability and clinical predictive validity.

作者信息

Glazer H I, Romanzi L, Polaneczky M

机构信息

Cornell University Medical College, New York, New York, USA.

出版信息

J Reprod Med. 1999 Sep;44(9):779-82.

Abstract

OBJECTIVE

To study the reliability and clinical predictive validity of pelvic floor muscle surface electromyography (sEMG) for use in early detection and prophylaxis of urogynecologic disorders.

STUDY DESIGN

Fifty-seven women ranging from 19 to 69 years of age completed a written questionnaire and underwent digital pelvic examination followed by pelvic floor muscle sEMG using an intravaginal sensor. Thirty-seven subjects underwent repeat evaluations one week or more later.

RESULTS

sEMG data demonstrated significant test-retest reliability (P < .001) and significant clinical predictive validity (P < .05) for undifferentiated urinary incontinence, stress incontinence, urge incontinence, menstrual status and parity on both initial and repeat examinations.

CONCLUSIONS

Pelvic floor muscle sEMG is reliable and consistently predictive of several important clinical status variables, suggesting that it can be a useful tool in early at-risk detection and prophylactic intervention for disorders of pelvic floor muscle laxity. Recent advances in sEMG technology make it cost-effective, convenient, noninvasive and easy to learn and administer by assisting staff. This technology is a powerful complementary tool for digital assessment of pelvic floor muscles and should be considered for use in gynecologic practice.

摘要

目的

研究盆底肌肉表面肌电图(sEMG)在泌尿妇科疾病早期检测和预防中的可靠性及临床预测效度。

研究设计

57名年龄在19至69岁之间的女性完成了一份书面问卷,并接受了盆腔指检,随后使用阴道内传感器进行盆底肌肉sEMG检测。37名受试者在一周或更长时间后接受了重复评估。

结果

sEMG数据在初次和重复检查中,对于未分化型尿失禁、压力性尿失禁、急迫性尿失禁、月经状况和产次均显示出显著的重测可靠性(P < .001)和显著的临床预测效度(P < .05)。

结论

盆底肌肉sEMG可靠且能持续预测多个重要的临床状态变量,表明其可作为盆底肌肉松弛症早期风险检测和预防性干预的有用工具。sEMG技术的最新进展使其具有成本效益、方便、无创,且便于辅助人员学习和操作。该技术是盆底肌肉数字评估的有力补充工具,应考虑在妇科实践中使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验