Maier A, Sklenar H, Kratky H F, Renner A, Schuster P
Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, D-13122 Berlin, Germany.
Eur Biophys J. 1999;28(7):564-73. doi: 10.1007/s002490050238.
The protocol of conformational analysis applied here to ribonucleotide oligomers combines conformational search in the space of torsion angles and energy minimization using the AMBER4.1 force field with a continuum treatment of electrostatic solute-solvent interactions. RNA fragments with 5'-GGGCGNNAGCCU-3' sequences commonly fold into hairpins with four-membered loops. The combinatorial search for acceptable conformations using the MC-SYM program was restricted to loop nucleotides and yielded roughly 1500 structures being compatible with a double-stranded stem. After energy minimization by the JUMNA program (without applying any experimental constraints), these structures converged into an ensemble of 74 different conformers including 26 structures which contained the sheared G-A base pair observed in experimental studies of GNRA tetraloops. Energetic analysis shows that inclusion of solvent electrostatic effects is critically important for the selection of conformers that agree with experimentally determined structures. The continuum model accounts for solvent polarization by means of the electrostatic reaction field. In the case of GNRA loop sequences, the contributions of the reaction field shift relative stabilities towards conformations showing most of the structural features derived from NMR studies. The agreement of computed conformations with the experimental structures of GAAA, GCAA, and GAGA tetraloops suggests that the continuum treatment of the solvent represents a definitive improvement over methods using simple damping models in electrostatic energy calculations. Application of the procedure described here to the evaluation of the relative stabilities of conformers resulting from searching the conformational space of RNA structural motifs provides some progress in (non-homology based) RNA 3D-structure prediction.
此处应用于核糖核苷酸寡聚物的构象分析方案,将扭转角空间中的构象搜索和使用AMBER4.1力场的能量最小化与静电溶质 - 溶剂相互作用的连续介质处理相结合。具有5'-GGGCGNNAGCCU-3'序列的RNA片段通常折叠成具有四元环的发夹结构。使用MC-SYM程序对可接受构象进行的组合搜索仅限于环核苷酸,并产生了大约1500个与双链茎兼容的结构。在通过JUMNA程序进行能量最小化(不施加任何实验约束)后,这些结构收敛为74种不同构象异构体的集合,其中包括26种结构,这些结构包含在GNRA四环的实验研究中观察到的剪切G-A碱基对。能量分析表明,包含溶剂静电效应对于选择与实验确定的结构一致的构象异构体至关重要。连续介质模型通过静电反应场来解释溶剂极化。对于GNRA环序列,反应场的贡献将相对稳定性向显示大多数源自NMR研究的结构特征的构象转移。计算得到的构象与GAAA、GCAA和GAGA四环的实验结构的一致性表明,溶剂的连续介质处理相对于在静电能量计算中使用简单阻尼模型的方法有了显著改进。将此处描述的程序应用于评估通过搜索RNA结构基序的构象空间而产生的构象异构体的相对稳定性,在(基于非同源性的)RNA三维结构预测方面取得了一些进展。