Hengstmann U, Chin K J, Janssen P H, Liesack W
Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany.
Appl Environ Microbiol. 1999 Nov;65(11):5050-8. doi: 10.1128/AEM.65.11.5050-5058.1999.
We used both cultivation and direct recovery of bacterial 16S rRNA gene (rDNA) sequences to investigate the structure of the bacterial community in anoxic rice paddy soil. Isolation and phenotypic characterization of 19 saccharolytic and cellulolytic strains are described in the accompanying paper (K.-J. Chin, D. Hahn, U. Hengstmann, W. Liesack, and P. H. Janssen, Appl. Environ. Microbiol. 65:5042-5049, 1999). Here we describe the phylogenetic positions of these strains in relation to 57 environmental 16S rDNA clone sequences. Close matches between the two data sets were obtained for isolates from the culturable populations determined by the most-probable-number counting method to be large (3 x 10(7) to 2.5 x 10(8) cells per g [dry weight] of soil). This included matches with 16S rDNA similarity values greater than 98% within distinct lineages of the division Verrucomicrobia (strain PB90-1) and the Cytophaga-Flavobacterium-Bacteroides group (strains XB45 and PB90-2), as well as matches with similarity values greater than 95% within distinct lines of descent of clostridial cluster XIVa (strain XB90) and the family Bacillaceae (strain SB45). In addition, close matches with similarity values greater than 95% were obtained for cloned 16S rDNA sequences and bacteria (strains DR1/8 and RPec1) isolated from the same type of rice paddy soil during previous investigations. The correspondence between culture methods and direct recovery of environmental 16S rDNA suggests that the isolates obtained are representative geno- and phenotypes of predominant bacterial groups which account for 5 to 52% of the total cells in the anoxic rice paddy soil. Furthermore, our findings clearly indicate that a dual approach results in a more objective view of the structural and functional composition of a soil bacterial community than either cultivation or direct recovery of 16S rDNA sequences alone.
我们运用培养法和直接回收细菌16S rRNA基因(rDNA)序列的方法,来研究缺氧稻田土壤中细菌群落的结构。随附论文(K.-J. Chin、D. Hahn、U. Hengstmann、W. Liesack和P. H. Janssen,《应用与环境微生物学》65:5042 - 5049,1999年)描述了19株解糖和纤维素分解菌株的分离及表型特征。在此,我们描述这些菌株相对于57个环境16S rDNA克隆序列的系统发育位置。通过最可能数计数法确定,从可培养群体中分离得到的菌株与两个数据集之间存在紧密匹配,这些可培养群体数量众多(每克[干重]土壤中有3×10⁷至2.5×10⁸个细胞)。这包括与疣微菌门(菌株PB90 - 1)和噬纤维菌 - 黄杆菌 - 拟杆菌群(菌株XB45和PB90 - 2)不同谱系内16S rDNA相似性值大于98%的匹配,以及与梭菌属簇XIVa(菌株XB90)和芽孢杆菌科(菌株SB45)不同谱系内相似性值大于95%的匹配。此外,在先前的研究中,从同一类型稻田土壤中分离得到的细菌(菌株DR1/8和RPec1)与克隆的16S rDNA序列之间也获得了相似性值大于95%的紧密匹配。培养方法与直接回收环境16S rDNA之间的对应关系表明,所获得的分离物是占缺氧稻田土壤总细胞数5%至52%的主要细菌群体的代表性基因型和表型。此外,我们的研究结果清楚地表明,与单独使用培养法或直接回收16S rDNA序列相比,采用双重方法能更客观地了解土壤细菌群落的结构和功能组成。