Weng T, Correia M J
Department of Otolaryngology, The University of Texas Medical Branch, Galveston, Texas 77555-1063, USA.
J Neurophysiol. 1999 Nov;82(5):2451-61. doi: 10.1152/jn.1999.82.5.2451.
Basolateral ionic currents and membrane voltage responses were studied in pigeon vestibular type II hair cells using a thin slice through either the semicircular canal (SCC) crista or utricular macular epithelium. Whole cell tight-seal patch-clamp recording techniques were used. Current-clamp and voltage-clamp studies were carried out on the same cell. One hundred ten cells were studied in the peripheral (Zone I) and central (Zone III) zones of the SCC crista, and 162 cells were studied in the striolar (S Zone) and extrastriolar (ES Zone) zones of the utricular macula. One of the major findings of this paper is that hair cells with fast activation kinetics of their outward currents are found primarily in one region of the SCC crista and utricular macula, whereas hair cells with slow activation kinetics are found in a different region. In Zone I of the crista, 95% of the cells have fast activation kinetics ("fast" cells) and in Zone III of the crista, 86% of the cells have slow activation kinetics ("slow" cells). In the utricular macula slice, 100% of the cells from the S Zone are slow cells, whereas 86% of the cells from the ES Zones are fast cells. Oscillation frequency (f) and quality factor (Q) of the damped oscillations of the membrane potential during extrinsic current injections were studied in hair cells in the different regions. The slow cells in Zone III and in the S Zone have a statistically significantly lower f, as a function of the amplitude of injected current, when compared with the fast cells in Zone I and the ES Zone. Although Q varied over a small range and was <2.6 for all cells tested, there was a statistically significant difference between Q for the membrane oscillations of the slow cells and fast cells in response to a range of current injections.