Suppr超能文献

乌龟后半规管毛细胞全细胞电流的功能分析。

Functional analysis of whole cell currents from hair cells of the turtle posterior crista.

作者信息

Goldberg Jay M, Brichta Alan M

机构信息

Department of Neurobiology, Pharmacology, and Physiology, Illinois 60637, USA.

出版信息

J Neurophysiol. 2002 Dec;88(6):3279-92. doi: 10.1152/jn.00771.2001.

Abstract

Controlled currents were used to study possible functions of voltage-sensitive, outwardly rectifying conductances. Results were interpreted with linearized Hodgkin-Huxley theory. Because of their more hyperpolarized resting potentials and lower impedances, type I hair cells require larger currents to be depolarized to a given voltage than do type II hair cells. "Fast" type II cells, so-called because of the fast activation of their outward currents, show slightly underdamped responses to current steps with resonant (best) frequencies of 40-85 Hz, well above the bandwidth of natural head movements. Reflecting their slower activation kinetics, type I and "slow" type II cells have best frequencies of 15-30 Hz and are poorly tuned, being critically damped or overdamped. Linearized theory identified the factors responsible for tuning quality. Our fast type II hair cells show only modestly underdamped responses because their steady-state I-V curves are not particularly steep. The even poorer tuning of our type I and slow type II cells can be attributed to their slow activation kinetics and large conductances. To study how ionic currents shape response dynamics, we superimposed sinusoidal currents of 0.1-100 Hz on a small depolarizing steady current intended to simulate resting conditions in vivo. The steady current resulted in a slow inactivation, most pronounced in fast type II cells and least pronounced in type I cells. Because of inactivation, fast type II cells have nearly passive response dynamics with low-frequency gains of 500-1,000 Momega. In contrast, type I and slow type II cells show active components in the vestibular bandwidth and low-frequency gains of 20-100 and 100-500 Momega, respectively. As there are no differences in the responses to sinusoidal currents for fast type II cells from the torus and planum, voltage-sensitive currents are unlikely to be responsible for the large differences in gains and response dynamics of afferents innervating these two regions of the peripheral zone. The low impedances and active components of type I cells may be related to the low gains and modestly phasic response dynamics of calyx-bearing afferents.

摘要

使用受控电流来研究电压敏感外向整流电导的可能功能。结果用线性化的霍奇金 - 赫胥黎理论进行解释。由于I型毛细胞的静息电位更超极化且阻抗更低,与II型毛细胞相比,将I型毛细胞去极化到给定电压需要更大的电流。“快速”II型细胞因其外向电流快速激活而得名,对电流阶跃表现出轻微欠阻尼响应,共振(最佳)频率为40 - 85赫兹,远高于自然头部运动的带宽。反映其激活动力学较慢,I型和“慢速”II型细胞的最佳频率为15 - 30赫兹,调谐不佳,处于临界阻尼或过阻尼状态。线性化理论确定了影响调谐质量的因素。我们的快速II型毛细胞仅表现出适度的欠阻尼响应,因为它们的稳态电流 - 电压曲线不是特别陡峭。我们的I型和慢速II型细胞调谐更差可归因于它们缓慢的激活动力学和大电导。为了研究离子电流如何塑造响应动力学,我们将0.1 - 100赫兹的正弦电流叠加在一个小的去极化稳定电流上,旨在模拟体内的静息条件。稳定电流导致缓慢失活,在快速II型细胞中最明显,在I型细胞中最不明显。由于失活,快速II型细胞具有几乎被动的响应动力学,低频增益为500 - 1000兆欧。相比之下,I型和慢速II型细胞在前庭带宽中显示出主动成分,低频增益分别为20 - 100和100 - 500兆欧。由于来自球囊和前庭平面的快速II型细胞对正弦电流的响应没有差异,电压敏感电流不太可能是支配外周区这两个区域的传入神经在增益和响应动力学上存在巨大差异的原因。I型细胞的低阻抗和主动成分可能与带花萼传入神经的低增益和适度的相位响应动力学有关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验