Carr D W, Cutler R E, Cottom J E, Salvador L M, Fraser I D, Scott J D, Hunzicker-Dunn M
Veterans Affairs Medical Center, Oregon Health Sciences University, Portland, OR 97201-3098, USA.
Biochem J. 1999 Dec 1;344 Pt 2(Pt 2):613-23.
Undifferentiated cells from preantral (PA) follicles respond to high levels of cAMP in a different manner than do differentiated cells from preovulatory (PO) follicles. We hypothesized that this differential response of PA and PO cells to cAMP could be due, in part, to either a difference in the profile of isoforms that comprise the cAMP-dependent protein kinase (PKA) holoenzymes and/or a difference in the interaction of PKA with A-kinase-anchoring proteins (AKAPs). To test these hypotheses, PKA activity, PKA holoenzymes, PKA subunits and AKAPs from PA and PO ovaries were compared. Soluble PKA holoenzymes and regulatory (R) subunits were separated by DEAE-cellulose chromatography and sucrose-density-gradient centrifugation. PKA R subunits were distinguished by photoaffinity labelling, autophosphorylation, size, isoelectric point and immunoreactivity. AKAPs were identified by RII subunit overlay assays and immunoreactivity. The results showed that extracts from PA and PO ovaries exhibited equivalent PKA holoenzyme profiles and activities, characterized by low levels of PKA type I (PKAI) holoenzyme and two distinct PKAII holoenzyme peaks, one containing only RIIbeta subunits (PKAIIbeta) and one containing both PKAIIbeta and PKAIIalpha holoenzymes. Both PA and PO ovarian extracts also contained PKA catalytic (C)-subunit-free RIalpha, while only PO ovaries exhibited C-subunit-free RIIbeta. Consistent with the elevated levels of C-subunit-free RIIbeta in PO cells, PKA activation in PO cells required higher concentrations of forskolin than that in PA cells. While extracts of PA and PO ovaries exhibited a number of similar AKAPs, including four prominent ones reactive with anti-AKAP-KL antisera (where AKAP-KL is an AKAP especially abundant in kidney and liver), cAMP-agarose affinity chromatography revealed two major differences in AKAP binding to purified R subunits. PO ovaries contained increased levels of AKAP80 (AKAP of 80 kDa) bound selectively to R subunits in DEAE-cellulose peak 2 (comprising PKAIIbeta and RIalpha), but not to R subunits in DEAE-cellulose peak 3 (comprising PKAIIalpha, PKAIIbeta and RIIbeta). PO ovaries also showed increased binding of R subunits to AKAPs reactive with anti-AKAP-KL antisera at 210, 175, 150 and 115 kDa. Thus in PO ovaries, unlike in PA ovaries, the majority of AKAPs are bound to R subunits. These results suggest that altered PKA-AKAP interactions may contribute to the distinct responses of PA and PO follicles to high levels of cAMP, and that higher cAMP levels are required to activate PKA in PO ovaries.
来自腔前(PA)卵泡的未分化细胞对高水平环磷酸腺苷(cAMP)的反应方式与来自排卵前(PO)卵泡的分化细胞不同。我们推测,PA和PO细胞对cAMP的这种差异反应可能部分归因于组成环磷酸腺苷依赖性蛋白激酶(PKA)全酶的同工型谱的差异和/或PKA与A激酶锚定蛋白(AKAP)相互作用的差异。为了验证这些假设,我们比较了PA和PO卵巢中的PKA活性、PKA全酶、PKA亚基和AKAP。通过DEAE - 纤维素色谱法和蔗糖密度梯度离心法分离可溶性PKA全酶和调节(R)亚基。通过光亲和标记、自磷酸化、大小、等电点和免疫反应性来区分PKA R亚基。通过RII亚基覆盖分析和免疫反应性鉴定AKAP。结果表明,PA和PO卵巢提取物表现出相当的PKA全酶谱和活性,其特征是低水平的I型PKA(PKAI)全酶和两个不同的心型PKA(PKAII)全酶峰,一个仅包含RIIβ亚基(PKAIIβ),另一个包含PKAIIβ和PKAIIα全酶。PA和PO卵巢提取物还都含有不含催化(C)亚基的RIα,而只有PO卵巢表现出不含C亚基的RIIβ。与PO细胞中不含C亚基的RIIβ水平升高一致,PO细胞中PKA的激活需要比PA细胞更高浓度的福司可林。虽然PA和PO卵巢提取物表现出许多相似的AKAP,包括四种与抗AKAP - KL抗血清反应的突出AKAP(其中AKAP - KL是一种在肾脏和肝脏中特别丰富的AKAP),但cAMP - 琼脂糖亲和色谱显示AKAP与纯化的R亚基结合存在两个主要差异。PO卵巢中与DEAE - 纤维素峰2(包含PKAIIβ和RIα)中的R亚基选择性结合的80 kDa AKAP(AKAP80)水平增加,但不与DEAE - 纤维素峰3(包含PKAIIα、PKAIIβ和RIIβ)中的R亚基结合。PO卵巢还显示R亚基与210、175、150和115 kDa处与抗AKAP - KL抗血清反应的AKAP的结合增加。因此,在PO卵巢中,与PA卵巢不同,大多数AKAP与R亚基结合。这些结果表明,PKA - AKAP相互作用的改变可能导致PA和PO卵泡对高水平cAMP的不同反应,并且在PO卵巢中需要更高的cAMP水平来激活PKA。