Suppr超能文献

根据人口统计学和损伤特征预测脊髓损伤后的社区重返情况。

Predicting community reintegration after spinal cord injury from demographic and injury characteristics.

作者信息

Whiteneck G, Tate D, Charlifue S

机构信息

Craig Hospital, Englewood, CO 80110, USA.

出版信息

Arch Phys Med Rehabil. 1999 Nov;80(11):1485-91. doi: 10.1016/s0003-9993(99)90262-9.

Abstract

OBJECTIVE

To determine the influence of demographic and injury characteristics on the community reintegration of people with spinal cord injury (SCI).

DESIGN

Prospective cross-sectional and longitudinal examination of individuals with SCI.

SETTING

Follow-up of individuals at 1, 2, 5, 10, 15, and 20 years after SCI who received their initial rehabilitation in a Regional Model Spinal Cord Injury System.

PARTICIPANTS

A total of 3,835 individuals who met the inclusion criteria for the National SCI Database were studied cross-sectionally, and a subset of 347 individuals who were also enrolled in a longitudinal study of aging with SCI.

MAIN OUTCOME MEASURES

Subscales of the Craig Handicap Assessment and Reporting Technique (CHART).

RESULTS

Neurologic classification, age, years postinjury, gender, ethnicity, and education explain 29% of the variance in physical independence, 29% of the variance in mobility, 28% of the variance in occupation. 9% of the variance in social integration, and 18% of the variance in economic self-sufficiency.

CONCLUSIONS

Although these factors are inadequate to explain most of the variation in community reintegration (handicap) after SCI, they might appropriately be used to adjust for case-mix differences when comparing rehabilitation facilities and techniques.

摘要

目的

确定人口统计学和损伤特征对脊髓损伤(SCI)患者重返社区的影响。

设计

对SCI患者进行前瞻性横断面和纵向检查。

设置

对在区域脊髓损伤模型系统接受初始康复治疗的SCI患者在伤后1年、2年、5年、10年、15年和20年进行随访。

参与者

共有3835名符合国家SCI数据库纳入标准的个体接受横断面研究,另有347名个体纳入SCI老龄化纵向研究。

主要观察指标

克雷格残疾评估与报告技术(CHART)分量表。

结果

神经学分类、年龄、伤后年限、性别、种族和教育程度可解释身体独立性差异的29%、活动能力差异的29%、职业差异的28%、社会融合差异的9%以及经济自给自足差异的18%。

结论

尽管这些因素不足以解释SCI后重返社区(残疾)的大部分差异,但在比较康复设施和技术时,它们可适当用于调整病例组合差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验