Suppr超能文献

人类腰椎纤维环的剪切力学特性。

Shear mechanical properties of human lumbar annulus fibrosus.

作者信息

Iatridis J C, Kumar S, Foster R J, Weidenbaum M, Mow V C

机构信息

Department of Mechanical Engineering, University of Vermont, Burlington 05405-0084, USA.

出版信息

J Orthop Res. 1999 Sep;17(5):732-7. doi: 10.1002/jor.1100170517.

Abstract

Function, failure, and remodeling of the intervertebral disc are all related to the stress and strain fields in the tissue and may be calculated by finite element models with accurate material properties, realistic geometry, and appropriate boundary conditions. There is no comprehensive study in the literature investigating the shear material properties of the annulus fibrosus. This study obtained shear material properties of the annulus fibrosus and tested the hypothesis that these properties are affected by the amplitude and frequency of shearing, applied compressive stress, and degenerative state of the tissue. Cylindrical specimens with an axial orientation from seven nondegenerated and six degenerated discs were tested in torsional shear under dynamic and static conditions. Frequency sweep experiments over a physiological range of frequencies (0.1-100 rad/sec) at a shear strain amplitude of 0.05 rad were performed under three different axial compressive stresses (17.5, 25, and 35 kPa). At the largest compressive stress, shear strain sweep experiments (strain amplitude range: 0.005-0.15 rad at a frequency of 5 rad/sec) and transient stress-relaxation tests (shear strain range: 0.02-0.15 rad) were performed. The annulus fibrosus material was less stiff and more dissipative at larger shear strain amplitudes, stiffer at higher frequencies of oscillation, and stiffer and less dissipative at larger axial compressive stresses. The dynamic shear modulus, /G*/, had values ranging from 100 to 400 kPa, depending on the experimental condition and degenerative level. The shear behavior was also predominantly elastic, with values for the tangent of the phase angle (tandelta) ranging from 0.1 to 0.7. The annulus material also became stiffer and more dissipative with degenerative grade; however, this was not statistically significant. The results indicated that nonlinearities, compression/shear coupling, intrinsic viscoelasticity, and, to a lesser degree, degeneration all affect the shear material behavior of the annulus fibrosus, with important implications for load-carriage mechanisms in the intervertebral disc. These material complexities should be considered when choosing material constants for finite element models.

摘要

椎间盘的功能、失效和重塑均与组织中的应力和应变场相关,并且可以通过具有精确材料特性、逼真几何形状和适当边界条件的有限元模型来计算。文献中尚无全面研究探讨纤维环的剪切材料特性。本研究获取了纤维环的剪切材料特性,并检验了以下假设:这些特性受剪切的幅度和频率、施加的压缩应力以及组织退变状态的影响。对取自七个非退变椎间盘和六个退变椎间盘的轴向取向圆柱形标本进行了动态和静态条件下的扭转剪切试验。在三种不同的轴向压缩应力(17.5、25和35 kPa)下,于生理频率范围(0.1 - 100 rad/秒)内以0.05 rad的剪切应变幅度进行频率扫描实验。在最大压缩应力下,进行了剪切应变扫描实验(应变幅度范围:在5 rad/秒频率下为0.005 - 0.15 rad)和瞬态应力松弛试验(剪切应变范围:0.02 - 0.15 rad)。纤维环材料在较大剪切应变幅度下刚度较小且耗散性更强,在较高振荡频率下更硬,在较大轴向压缩应力下更硬且耗散性更小。动态剪切模量/G*/的值在100至400 kPa之间,具体取决于实验条件和退变程度。剪切行为也主要为弹性,相位角正切(tandelta)的值在0.1至0.7之间。纤维环材料也随着退变等级的增加而变得更硬且耗散性更强;然而,这在统计学上并不显著。结果表明,非线性、压缩/剪切耦合、固有粘弹性以及在较小程度上的退变均会影响纤维环的剪切材料行为,这对椎间盘的承载机制具有重要意义。在为有限元模型选择材料常数时应考虑这些材料复杂性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验