Suppr超能文献

八度扩展效应可能的神经生理基础。

A possible neurophysiological basis of the octave enlargement effect.

作者信息

McKinney M F, Delgutte B

机构信息

Speech and Hearing Sciences Program, Harvard University-Massachusetts Institute of Technology, Boston, USA.

出版信息

J Acoust Soc Am. 1999 Nov;106(5):2679-92. doi: 10.1121/1.428098.

Abstract

Although the physical octave is defined as a simple ratio of 2:1, listeners prefer slightly greater octave ratios. Ohgushi [J. Acoust. Soc. Am. 73, 1694-1700 (1983)] suggested that a temporal model for octave matching would predict this octave enlargement effect because, in response to pure tones, auditory-nerve interspike intervals are slightly larger than the stimulus period. In an effort to test Ohgushi's hypothesis, auditory-nerve single-unit responses to pure-tone stimuli were collected from Dial-anesthetized cats. It was found that although interspike interval distributions show clear phase-locking to the stimulus, intervals systematically deviate from integer multiples of the stimulus period. Due to refractory effects, intervals smaller than 5 msec are slightly larger than the stimulus period and deviate most for small intervals. On the other hand, first-order intervals are smaller than the stimulus period for stimulus frequencies less than 500 Hz. It is shown that this deviation is the combined effect of phase-locking and multiple spikes within one stimulus period. A model for octave matching was implemented which compares frequency estimates of two tones based on their interspike interval distributions. The model quantitatively predicts the octave enlargement effect. These results are consistent with the idea that musical pitch is derived from auditory-nerve interspike interval distributions.

摘要

尽管物理八度被定义为2:1的简单比例,但听众更喜欢略大一些的八度比例。大串[《美国声学学会杂志》73, 1694 - 1700 (1983)]提出,八度匹配的时间模型可以预测这种八度扩展效应,因为在对纯音的反应中,听神经峰峰间隔略大于刺激周期。为了检验大串的假设,从 Dial 麻醉的猫身上收集了听神经对纯音刺激的单单位反应。结果发现,尽管峰峰间隔分布显示出对刺激的明显锁相,但间隔系统地偏离了刺激周期的整数倍。由于不应期效应,小于5毫秒的间隔略大于刺激周期,并且在小间隔时偏离最大。另一方面,对于小于500赫兹的刺激频率,一阶间隔小于刺激周期。结果表明,这种偏差是一个刺激周期内锁相和多个尖峰的综合效应。实现了一个八度匹配模型,该模型根据两个音调的峰峰间隔分布比较它们的频率估计。该模型定量地预测了八度扩展效应。这些结果与音乐音高源自听神经峰峰间隔分布的观点一致。

相似文献

1
A possible neurophysiological basis of the octave enlargement effect.
J Acoust Soc Am. 1999 Nov;106(5):2679-92. doi: 10.1121/1.428098.
2
Neural correlates of the pitch of complex tones. I. Pitch and pitch salience.
J Neurophysiol. 1996 Sep;76(3):1698-716. doi: 10.1152/jn.1996.76.3.1698.
4
Pitch of complex tones: rate-place and interspike interval representations in the auditory nerve.
J Neurophysiol. 2005 Jul;94(1):347-62. doi: 10.1152/jn.01114.2004. Epub 2005 Mar 23.
5
On the origin of the enlarged melodic octave.
J Acoust Soc Am. 1993 Jun;93(6):3400-9. doi: 10.1121/1.405695.
6
Harmonic fusion and pitch affinity: Is there a direct link?
Hear Res. 2016 Mar;333:247-254. doi: 10.1016/j.heares.2015.08.015. Epub 2015 Sep 1.
7
Pitch representations in the auditory nerve: two concurrent complex tones.
J Neurophysiol. 2008 Sep;100(3):1301-19. doi: 10.1152/jn.01361.2007. Epub 2008 Jul 16.
8
Pure tone pitch perception and low-frequency hearing loss.
J Acoust Soc Am. 1983 Mar;73(3):966-75. doi: 10.1121/1.389022.
9
Temporal coding of periodicity pitch in the auditory system: an overview.
Neural Plast. 1999;6(4):147-72. doi: 10.1155/NP.1999.147.

引用本文的文献

1
Mistuning perception in music is asymmetric and relies on both beats and inharmonicity.
Commun Psychol. 2024 Oct 2;2(1):91. doi: 10.1038/s44271-024-00141-1.
3
Computational Modeling of Synchrony in the Auditory Nerve in Response to Acoustic and Electric Stimulation.
Front Comput Neurosci. 2022 Jun 17;16:889992. doi: 10.3389/fncom.2022.889992. eCollection 2022.
4
The perception of octave pitch affinity and harmonic fusion have a common origin.
Hear Res. 2021 May;404:108213. doi: 10.1016/j.heares.2021.108213. Epub 2021 Feb 19.
5
Noise edge pitch and models of pitch perception.
J Acoust Soc Am. 2019 Apr;145(4):1993. doi: 10.1121/1.5093546.
6
The 1.06 frequency ratio in the cochlea: evidence and outlook for a natural musical semitone.
PeerJ. 2017 Dec 21;5:e4192. doi: 10.7717/peerj.4192. eCollection 2017.
7
Modeling binaural responses in the auditory brainstem to electric stimulation of the auditory nerve.
J Assoc Res Otolaryngol. 2015 Feb;16(1):135-58. doi: 10.1007/s10162-014-0492-6. Epub 2014 Oct 28.
8
Auditory discrimination of frequency ratios: the octave singularity.
J Exp Psychol Hum Percept Perform. 2013 Jun;39(3):788-801. doi: 10.1037/a0030095. Epub 2012 Oct 22.
9
Characterizing the dependence of pure-tone frequency difference limens on frequency, duration, and level.
Hear Res. 2012 Oct;292(1-2):1-13. doi: 10.1016/j.heares.2012.07.004. Epub 2012 Jul 25.
10
Psychometric functions for pure-tone frequency discrimination.
J Acoust Soc Am. 2011 Jul;130(1):263-72. doi: 10.1121/1.3598448.

本文引用的文献

1
Pitch characteristics of short tones; two kinds of pitch threshold.
J Exp Psychol. 1947 Aug;37(4):351-65. doi: 10.1037/h0061516.
2
Pitch characteristics of short tones; pitch as a function of tonal duration.
J Exp Psychol. 1948 Aug;38(4):478-94. doi: 10.1037/h0057850.
3
A duplex theory of pitch perception.
Experientia. 1951 Apr 15;7(4):128-34. doi: 10.1007/BF02156143.
4
Some quantitative methods for the study of spontaneous activity of single neurons.
Biophys J. 1962 Jul;2(4):351-68. doi: 10.1016/s0006-3495(62)86860-x.
5
Psychophysical evidence against the autocorrelation theory of auditory temporal processing.
J Acoust Soc Am. 1998 Oct;104(4):2298-306. doi: 10.1121/1.423742.
6
Sharp low- and high-frequency limits on musical chord recognition.
Hear Res. 1997 Mar;105(1-2):77-84. doi: 10.1016/s0378-5955(96)00205-5.
8
Neural correlates of the pitch of complex tones. I. Pitch and pitch salience.
J Neurophysiol. 1996 Sep;76(3):1698-716. doi: 10.1152/jn.1996.76.3.1698.
9
On the origin of the enlarged melodic octave.
J Acoust Soc Am. 1993 Jun;93(6):3400-9. doi: 10.1121/1.405695.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验