Suppr超能文献

受阻错配糖基化酶DNA修复复合物的晶体结构

Crystal structure of a thwarted mismatch glycosylase DNA repair complex.

作者信息

Barrett T E, Schärer O D, Savva R, Brown T, Jiricny J, Verdine G L, Pearl L H

机构信息

Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT.

出版信息

EMBO J. 1999 Dec 1;18(23):6599-609. doi: 10.1093/emboj/18.23.6599.

Abstract

The bacterial mismatch-specific uracil-DNA glycosylase (MUG) and eukaryotic thymine-DNA glycosylase (TDG) enzymes form a homologous family of DNA glycosylases that initiate base-excision repair of G:U/T mismatches. Despite low sequence homology, the MUG/TDG enzymes are structurally related to the uracil-DNA glycosylase enzymes, but have a very different mechanism for substrate recognition. We have now determined the crystal structure of the Escherichia coli MUG enzyme complexed with an oligonucleotide containing a non-hydrolysable deoxyuridine analogue mismatched with guanine, providing the first structure of an intact substrate-nucleotide productively bound to a hydrolytic DNA glycosylase. The structure of this complex explains the preference for G:U over G:T mispairs, and reveals an essentially non-specific pyrimidine-binding pocket that allows MUG/TDG enzymes to excise the alkylated base, 3, N(4)-ethenocytosine. Together with structures for the free enzyme and for an abasic-DNA product complex, the MUG-substrate analogue complex reveals the conformational changes accompanying the catalytic cycle of substrate binding, base excision and product release.

摘要

细菌错配特异性尿嘧啶-DNA糖基化酶(MUG)和真核胸腺嘧啶-DNA糖基化酶(TDG)形成了一个DNA糖基化酶的同源家族,它们启动G:U/T错配的碱基切除修复。尽管序列同源性较低,但MUG/TDG酶在结构上与尿嘧啶-DNA糖基化酶相关,但底物识别机制却大不相同。我们现已确定了大肠杆菌MUG酶与含有与鸟嘌呤错配的不可水解脱氧尿苷类似物的寡核苷酸复合的晶体结构,提供了完整底物-核苷酸与水解性DNA糖基化酶有效结合的首个结构。该复合物的结构解释了对G:U错配而非G:T错配的偏好,并揭示了一个基本非特异性的嘧啶结合口袋,该口袋允许MUG/TDG酶切除烷基化碱基3,N(4)-乙烯基胞嘧啶。与游离酶和无碱基-DNA产物复合物的结构一起,MUG-底物类似物复合物揭示了伴随底物结合、碱基切除和产物释放催化循环的构象变化。

相似文献

1
Crystal structure of a thwarted mismatch glycosylase DNA repair complex.
EMBO J. 1999 Dec 1;18(23):6599-609. doi: 10.1093/emboj/18.23.6599.
3
Structure and function in the uracil-DNA glycosylase superfamily.
Mutat Res. 2000 Aug 30;460(3-4):165-81. doi: 10.1016/s0921-8777(00)00025-2.
4
Substrate recognition by a family of uracil-DNA glycosylases: UNG, MUG, and TDG.
Chem Res Toxicol. 2002 Aug;15(8):1001-9. doi: 10.1021/tx020030a.
5
Thymine DNA glycosylase.
Prog Nucleic Acid Res Mol Biol. 2001;68:235-53. doi: 10.1016/s0079-6603(01)68103-0.
7
The role of the Escherichia coli mug protein in the removal of uracil and 3,N(4)-ethenocytosine from DNA.
J Biol Chem. 1999 Oct 22;274(43):31034-8. doi: 10.1074/jbc.274.43.31034.
8
A new class of uracil-DNA glycosylases related to human thymine-DNA glycosylase.
Nature. 1996 Oct 24;383(6602):735-8. doi: 10.1038/383735a0.
9
Uracil in DNA--occurrence, consequences and repair.
Oncogene. 2002 Dec 16;21(58):8935-48. doi: 10.1038/sj.onc.1205996.

引用本文的文献

1
Characterizing the excision of 7,8-dihydro-8-oxoadenine by thymine DNA glycosylase.
J Biol Chem. 2025 Jun 16;301(7):110363. doi: 10.1016/j.jbc.2025.110363.
2
Structural Insights into the Mechanism of Base Excision by MBD4.
J Mol Biol. 2021 Jul 23;433(15):167097. doi: 10.1016/j.jmb.2021.167097. Epub 2021 Jun 6.
3
2'-Fluorinated Hydantoins as Chemical Biology Tools for Base Excision Repair Glycosylases.
ACS Chem Biol. 2020 Apr 17;15(4):915-924. doi: 10.1021/acschembio.9b00923. Epub 2020 Mar 13.
4
Excision of 5-Carboxylcytosine by Thymine DNA Glycosylase.
J Am Chem Soc. 2019 Nov 27;141(47):18851-18861. doi: 10.1021/jacs.9b10376. Epub 2019 Nov 18.
5
Defining the Role of Nucleotide Flipping in Enzyme Specificity Using F NMR.
J Am Chem Soc. 2019 Mar 27;141(12):4952-4962. doi: 10.1021/jacs.9b00146. Epub 2019 Mar 14.
6
Toxicity and repair of DNA adducts produced by the natural product yatakemycin.
Nat Chem Biol. 2017 Sep;13(9):1002-1008. doi: 10.1038/nchembio.2439. Epub 2017 Jul 24.
7
Identification of a prototypical single-stranded uracil DNA glycosylase from Listeria innocua.
DNA Repair (Amst). 2017 Sep;57:107-115. doi: 10.1016/j.dnarep.2017.07.001. Epub 2017 Jul 8.
9
Structural Basis for Excision of 5-Formylcytosine by Thymine DNA Glycosylase.
Biochemistry. 2016 Nov 15;55(45):6205-6208. doi: 10.1021/acs.biochem.6b00982. Epub 2016 Nov 2.
10
Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues.
Nucleic Acids Res. 2016 Dec 1;44(21):10248-10258. doi: 10.1093/nar/gkw768. Epub 2016 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验