Suppr超能文献

在需氧和反硝化条件下,从海洋沉积物中分离出的细菌群落对游离叶绿醇的生物降解作用。

Biodegradation of free phytol by bacterial communities isolated from marine sediments under aerobic and denitrifying conditions.

作者信息

Rontani J F, Bonin P C, Volkman J K

机构信息

Laboratoire d'Océanographie et de Biogéochimie (UMR 6535), Centre d'Océanologie de Marseille (OSU), Campus de Luminy, 13288 Marseille, France.

出版信息

Appl Environ Microbiol. 1999 Dec;65(12):5484-92. doi: 10.1128/AEM.65.12.5484-5492.1999.

Abstract

Biodegradation of (E)-phytol [3,7,11, 15-tetramethylhexadec-2(E)-en-1-ol] by two bacterial communities isolated from recent marine sediments under aerobic and denitrifying conditions was studied at 20 degrees C. This isoprenoid alcohol is metabolized efficiently by these two bacterial communities via 6,10, 14-trimethylpentadecan-2-one and (E)-phytenic acid. The first step in both aerobic and anaerobic bacterial degradation of (E)-phytol involves the transient production of (E)-phytenal, which in turn can be abiotically converted to 6,10,14-trimethylpentadecan-2-one. Most of the isoprenoid metabolites identified in vitro could be detected in a fresh sediment core collected at the same site as the sediments used for the incubations. Since (E)-phytenal is less sensitive to abiotic degradation at the temperature of the sediments (15 degrees C), the major part of (E)-phytol appeared to be biodegraded in situ via (E)-phytenic acid. (Z)- and (E)-phytenic acids are present in particularly large quantities in the upper section of the core, and their concentrations quickly decrease with depth in the core. This degradation (which takes place without significant production of phytanic acid) is attributed to the involvement of alternating beta-decarboxymethylation and beta-oxidation reaction sequences induced by denitrifiers. Despite the low nitrate concentration of marine sediments, denitrifying bacteria seem to play a significant role in the mineralization of (E)-phytol.

摘要

在20℃下,研究了从近期海洋沉积物中分离出的两个细菌群落对(E)-植醇[3,7,11,15-四甲基十六-2(E)-烯-1-醇]在有氧和反硝化条件下的生物降解。这一同系物醇能被这两个细菌群落通过6,10,14-三甲基十五烷-2-酮和(E)-植烷酸有效地代谢。(E)-植醇在好氧和厌氧细菌降解中的第一步都涉及(E)-植醛的短暂生成,而(E)-植醛又能非生物转化为6,10,14-三甲基十五烷-2-酮。在体外鉴定出的大多数类异戊二烯代谢产物都能在与用于培养的沉积物相同地点采集的新鲜沉积物岩心中检测到。由于(E)-植醛在沉积物温度(15℃)下对非生物降解不太敏感,(E)-植醇的大部分似乎是通过(E)-植烷酸在原位进行生物降解的。(Z)-和(E)-植烷酸在岩心上部的含量特别高,且它们的浓度随岩心深度迅速降低。这种降解(在没有大量植烷酸生成的情况下发生)归因于反硝化细菌诱导的交替β-脱羧甲基化和β-氧化反应序列的参与。尽管海洋沉积物中的硝酸盐浓度很低,但反硝化细菌似乎在(E)-植醇的矿化过程中发挥了重要作用。

相似文献

1
Biodegradation of free phytol by bacterial communities isolated from marine sediments under aerobic and denitrifying conditions.
Appl Environ Microbiol. 1999 Dec;65(12):5484-92. doi: 10.1128/AEM.65.12.5484-5492.1999.
3
Aerobic and anaerobic metabolism of squalene by a denitrifying bacterium isolated from marine sediment.
Arch Microbiol. 2002 Oct;178(4):279-87. doi: 10.1007/s00203-002-0457-8. Epub 2002 Jul 12.
5
Characterization of the final step in the conversion of phytol into phytanic acid.
J Biol Chem. 2005 Jul 22;280(29):26838-44. doi: 10.1074/jbc.M501861200. Epub 2005 May 2.
6
Phytol degradation by marine bacteria.
Appl Environ Microbiol. 1983 May;45(5):1423-8. doi: 10.1128/aem.45.5.1423-1428.1983.
7
Production of wax esters during aerobic growth of marine bacteria on isoprenoid compounds.
Appl Environ Microbiol. 1999 Jan;65(1):221-30. doi: 10.1128/AEM.65.1.221-230.1999.
8
The transformation of hexabromocyclododecane in aerobic and anaerobic soils and aquatic sediments.
Water Res. 2005 Mar;39(6):1075-84. doi: 10.1016/j.watres.2004.11.024.
9
Identification of fatty aldehyde dehydrogenase in the breakdown of phytol to phytanic acid.
Mol Genet Metab. 2004 May;82(1):33-7. doi: 10.1016/j.ymgme.2004.01.019.
10
Phytol derived from chlorophyll hydrolysis in plants is metabolized via phytenal.
J Biol Chem. 2021 Jan-Jun;296:100530. doi: 10.1016/j.jbc.2021.100530. Epub 2021 Mar 11.

引用本文的文献

1
Metabolomic Profile of Personalized Donor Human Milk.
Molecules. 2020 Dec 8;25(24):5783. doi: 10.3390/molecules25245783.
2
Sacrificial amphiphiles: Eco-friendly chemical herders as oil spill mitigation chemicals.
Sci Adv. 2015 Jun 26;1(5):e1400265. doi: 10.1126/sciadv.1400265. eCollection 2015 Jun.
4
Isoprenoids: remarkable diversity of form and function.
Lipids. 2004 Apr;39(4):293-309. doi: 10.1007/s11745-004-1233-3.
5

本文引用的文献

1
Copepod fecal pellets as a source of dihydrophytol in marine sediments.
Science. 1984 Jun 15;224(4654):1235-7. doi: 10.1126/science.224.4654.1235.
3
Phytol degradation by marine bacteria.
Appl Environ Microbiol. 1983 May;45(5):1423-8. doi: 10.1128/aem.45.5.1423-1428.1983.
5
Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems.
FEMS Microbiol Rev. 1998 Dec;22(5):475-88. doi: 10.1111/j.1574-6976.1998.tb00382.x.
6
Production of wax esters during aerobic growth of marine bacteria on isoprenoid compounds.
Appl Environ Microbiol. 1999 Jan;65(1):221-30. doi: 10.1128/AEM.65.1.221-230.1999.
7
Anaerobic mineralization of cholesterol by a novel type of denitrifying bacterium.
Arch Microbiol. 1997 Apr 15;167(5):269-74. doi: 10.1007/s002030050442.
9
Microbial degradation of monoterpenes in the absence of molecular oxygen.
Appl Environ Microbiol. 1995 Nov;61(11):3804-8. doi: 10.1128/aem.61.11.3804-3808.1995.
10
A major pathway for the mammalian oxidative degradation of phytanic acid.
Biochim Biophys Acta. 1969 Jun 10;176(4):720-39. doi: 10.1016/0005-2760(69)90253-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验