Suppr超能文献

硫酸盐还原菌AK-01对厌氧烷烃降解的初始反应

Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01.

作者信息

So C M, Young L Y

机构信息

Biotechnology Center for Agriculture and the Environment and Department of Environmental Sciences, Cook College, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901-8520, USA.

出版信息

Appl Environ Microbiol. 1999 Dec;65(12):5532-40. doi: 10.1128/AEM.65.12.5532-5540.1999.

Abstract

An alkane-degrading, sulfate-reducing bacterial strain, AK-01, isolated from a petroleum-contaminated sediment was studied to elucidate its mechanism of alkane metabolism. Total cellular fatty acids of AK-01 were predominantly C even when it was grown on C-even alkanes and were predominantly C odd when grown on C-odd alkanes, suggesting that the bacterium anaerobically oxidizes alkanes to fatty acids. Among these fatty acids, some 2-, 4-, and 6-methylated fatty acids were specifically found only when AK-01 was grown on alkanes, and their chain lengths always correlated with those of the alkanes. When [1,2-(13)C(2)]hexadecane or perdeuterated pentadecane was used as the growth substrate, (13)C-labeled 2-Me-16:0, 4-Me-18:0, and 6-Me-20:0 fatty acids or deuterated 2-Me-15:0, 4-Me-17:0, and 6-Me-19:0 fatty acids were recovered, respectively, confirming that these monomethylated fatty acids were alkane derived. Examination of the (13)C-labeled 2-, 4-, and 6-methylated fatty acids by mass spectrometry showed that each of them contained two (13)C atoms, located at the methyl group and the adjacent carbon, thus indicating that the methyl group was the original terminal carbon of the [1, 2-(13)C(2)]hexadecane. For perdeuterated pentadecane, the presence of three deuterium atoms, on the methyl group and its adjacent carbon, in each of the deuterated 2-, 4-, and 6-methylated fatty acids further supported the hypothesis that the methyl group was the terminal carbon of the alkane. Thus, exogenous carbon appears to be initially added to an alkane subterminally at the C-2 position such that the original terminal carbon of the alkane becomes a methyl group on the subsequently formed fatty acid. The carbon addition reaction, however, does not appear to be a direct carboxylation of inorganic bicarbonate. A pathway for anaerobic metabolism of alkanes by strain AK-01 is proposed.

摘要

对从石油污染沉积物中分离出的一株降解烷烃、硫酸盐还原细菌AK-01进行了研究,以阐明其烷烃代谢机制。AK-01的总细胞脂肪酸在以偶数碳烷烃为生长底物时主要为偶数碳,而在以奇数碳烷烃为生长底物时主要为奇数碳,这表明该细菌通过厌氧方式将烷烃氧化为脂肪酸。在这些脂肪酸中,只有当AK-01在烷烃上生长时才会特异性地发现一些2-、4-和6-甲基化脂肪酸,并且它们的链长总是与烷烃的链长相关。当使用[1,2-(13)C(2)]十六烷或全氘代十五烷作为生长底物时,分别回收了(13)C标记的2-Me-16:0、4-Me-18:0和6-Me-20:0脂肪酸或氘代的2-Me-15:0、4-Me-17:0和6-Me-19:0脂肪酸,证实这些单甲基化脂肪酸源自烷烃。通过质谱对(13)C标记的2-、4-和6-甲基化脂肪酸进行检测表明,它们每个都含有两个(13)C原子,位于甲基和相邻的碳原子上,因此表明甲基是[1,2-(13)C(2)]十六烷的原始末端碳。对于全氘代十五烷,在每个氘代的2-、4-和6-甲基化脂肪酸中,甲基及其相邻碳原子上存在三个氘原子,进一步支持了甲基是烷烃末端碳的假设。因此,外源碳似乎最初在C-2位置以亚末端方式添加到烷烃上,使得烷烃的原始末端碳在随后形成的脂肪酸上成为甲基。然而,碳添加反应似乎不是无机碳酸氢盐的直接羧化反应。提出了菌株AK-01厌氧代谢烷烃的途径。

相似文献

1
Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01.
Appl Environ Microbiol. 1999 Dec;65(12):5532-40. doi: 10.1128/AEM.65.12.5532-5540.1999.
2
Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3.
Appl Environ Microbiol. 2003 Jul;69(7):3892-900. doi: 10.1128/AEM.69.7.3892-3900.2003.
3
Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T.
Appl Environ Microbiol. 2005 Jul;71(7):3458-67. doi: 10.1128/AEM.71.7.3458-3467.2005.
5
Anaerobic 1-alkene metabolism by the alkane- and alkene-degrading sulfate reducer Desulfatibacillum aliphaticivorans strain CV2803T.
Appl Environ Microbiol. 2007 Dec;73(24):7882-90. doi: 10.1128/AEM.01097-07. Epub 2007 Oct 26.
6
Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes.
Appl Environ Microbiol. 1999 Jul;65(7):2969-76. doi: 10.1128/AEM.65.7.2969-2976.1999.
7
Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns.
FEMS Microbiol Ecol. 2010 Jun;72(3):485-95. doi: 10.1111/j.1574-6941.2010.00866.x. Epub 2010 Mar 19.
8
Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments.
Appl Environ Microbiol. 1997 Sep;63(9):3589-93. doi: 10.1128/aem.63.9.3589-3593.1997.
10
Anaerobic oxidation of n-alkenes by sulphate-reducing bacteria from the genus Desulfatiferula: n-ketones as potential metabolites.
Res Microbiol. 2011 Nov;162(9):915-22. doi: 10.1016/j.resmic.2011.07.004. Epub 2011 Jul 20.

引用本文的文献

2
Periodic and Spatial Spreading of Alkanes and Bacteria in Deep Waters of the Mariana Trench.
Appl Environ Microbiol. 2019 Jan 23;85(3). doi: 10.1128/AEM.02089-18. Print 2019 Feb 1.
3
Sulfate-Reducing Naphthalene Degraders Are Picky Eaters.
Microorganisms. 2018 Jun 25;6(3):59. doi: 10.3390/microorganisms6030059.
4
Survival and Energy Producing Strategies of Alkane Degraders Under Extreme Conditions and Their Biotechnological Potential.
Front Microbiol. 2018 May 25;9:1081. doi: 10.3389/fmicb.2018.01081. eCollection 2018.
8
Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins.
Front Microbiol. 2013 May 14;4:89. doi: 10.3389/fmicb.2013.00089. eCollection 2013.
9
Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases.
Front Microbiol. 2013 Mar 21;4:58. doi: 10.3389/fmicb.2013.00058. eCollection 2013.
10

本文引用的文献

1
Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices.
Biotechnol Bioeng. 1997 Sep 20;55(6):831-40. doi: 10.1002/(SICI)1097-0290(19970920)55:6<831::AID-BIT2>3.0.CO;2-H.
3
On methane fermentation of higher alkanes.
Antonie Van Leeuwenhoek. 1957;23(3-4):369-84. doi: 10.1007/BF02545890.
4
Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes.
Appl Environ Microbiol. 1999 Jul;65(7):2969-76. doi: 10.1128/AEM.65.7.2969-2976.1999.
6
Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia.
Appl Environ Microbiol. 1997 Dec;63(12):4759-64. doi: 10.1128/aem.63.12.4759-4764.1997.
7
Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments.
Appl Environ Microbiol. 1997 Sep;63(9):3589-93. doi: 10.1128/aem.63.9.3589-3593.1997.
9
10
Mitochondrial beta-oxidation of 2-methyl fatty acids in rat liver.
Arch Biochem Biophys. 1995 Aug 1;321(1):221-8. doi: 10.1006/abbi.1995.1389.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验