Suppr超能文献

相似文献

1
Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study.
Biophys J. 1999 Dec;77(6):3085-95. doi: 10.1016/S0006-3495(99)77139-0.
2
Remodeling the shape of the skeleton in the intact red cell.
Biophys J. 1996 Feb;70(2):1036-44. doi: 10.1016/S0006-3495(96)79649-2.
5
Is the surface area of the red cell membrane skeleton locally conserved?
Biophys J. 1992 Feb;61(2):298-305. doi: 10.1016/S0006-3495(92)81837-4.
6
An elastic network model based on the structure of the red blood cell membrane skeleton.
Biophys J. 1996 Jan;70(1):146-66. doi: 10.1016/S0006-3495(96)79556-5.
7
The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer.
Biophys J. 1998 Sep;75(3):1424-38. doi: 10.1016/S0006-3495(98)74061-5.
8
Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells.
Biophys J. 1997 Jun;72(6):2669-78. doi: 10.1016/S0006-3495(97)78910-0.
9
Axisymmetric optical-trap measurement of red blood cell membrane elasticity.
J Biomech Eng. 2011 Jan;133(1):011007. doi: 10.1115/1.4003127.
10
Structural determinants of the rigidity of the red cell membrane.
Biorheology. 1993 Sep-Dec;30(5-6):397-407. doi: 10.3233/bir-1993-305-611.

引用本文的文献

1
Soft matter mechanics of immune cell aggregates.
J R Soc Interface. 2025 Jul;22(228):20250231. doi: 10.1098/rsif.2025.0231. Epub 2025 Jul 23.
2
Harnessing optical forces with advanced nanophotonic structures: principles and applications.
Discov Nano. 2025 May 3;20(1):76. doi: 10.1186/s11671-025-04252-4.
3
Robust quantification of cellular mechanics using optical tweezers.
Biophys Rep (N Y). 2025 Mar 12;5(1):100199. doi: 10.1016/j.bpr.2025.100199. Epub 2025 Feb 11.
4
Optical tweezers in biomedical research - progress and techniques.
J Med Life. 2024 Nov;17(11):978-993. doi: 10.25122/jml-2024-0316.
5
6
Viscoelastic phenotyping of red blood cells.
Biophys J. 2024 Apr 2;123(7):770-781. doi: 10.1016/j.bpj.2024.01.019. Epub 2024 Jan 23.
7
Measurement of red blood cell deformability during morphological changes using rotating-glass-plate-based scanning optical tweezers.
Biomed Opt Express. 2023 Aug 29;14(9):4979-4989. doi: 10.1364/BOE.499018. eCollection 2023 Sep 1.
8
Non-Invasive Dynamic Reperfusion of Microvessels Controlled by Optical Tweezers.
Front Bioeng Biotechnol. 2022 Jul 14;10:952537. doi: 10.3389/fbioe.2022.952537. eCollection 2022.
9
Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance.
Molecules. 2022 Jan 21;27(3):705. doi: 10.3390/molecules27030705.
10
The Rise of the OM-LoC: Opto-Microfluidic Enabled Lab-on-Chip.
Micromachines (Basel). 2021 Nov 28;12(12):1467. doi: 10.3390/mi12121467.

本文引用的文献

3
Entropy-driven tension and bending elasticity in condensed-fluid membranes.
Phys Rev Lett. 1990 Apr 23;64(17):2094-2097. doi: 10.1103/PhysRevLett.64.2094.
4
A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers.
Biophys J. 1999 Feb;76(2):1145-51. doi: 10.1016/S0006-3495(99)77279-6.
5
Spectrin properties and the elasticity of the red blood cell membrane skeleton.
Biorheology. 1997 Jul-Oct;34(4-5):327-48. doi: 10.1016/s0006-355x(98)00008-0.
7
Influence of network topology on the elasticity of the red blood cell membrane skeleton.
Biophys J. 1997 May;72(5):2369-81. doi: 10.1016/S0006-3495(97)78882-9.
8
Kinematics of red cell aspiration by fluorescence-imaged microdeformation.
Biophys J. 1996 Oct;71(4):1680-94. doi: 10.1016/S0006-3495(96)79424-9.
10
An elastic network model based on the structure of the red blood cell membrane skeleton.
Biophys J. 1996 Jan;70(1):146-66. doi: 10.1016/S0006-3495(96)79556-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验