Suppr超能文献

相似文献

2
Remodeling the shape of the skeleton in the intact red cell.
Biophys J. 1996 Feb;70(2):1036-44. doi: 10.1016/S0006-3495(96)79649-2.
4
An elastic network model based on the structure of the red blood cell membrane skeleton.
Biophys J. 1996 Jan;70(1):146-66. doi: 10.1016/S0006-3495(96)79556-5.
5
Axisymmetric optical-trap measurement of red blood cell membrane elasticity.
J Biomech Eng. 2011 Jan;133(1):011007. doi: 10.1115/1.4003127.
6
Force versus axial deflection of pipette-aspirated closed membranes.
Biophys J. 2007 Jul 15;93(2):363-72. doi: 10.1529/biophysj.107.104091. Epub 2007 Apr 27.
7
Is the surface area of the red cell membrane skeleton locally conserved?
Biophys J. 1992 Feb;61(2):298-305. doi: 10.1016/S0006-3495(92)81837-4.
8
Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study.
Biophys J. 1999 Dec;77(6):3085-95. doi: 10.1016/S0006-3495(99)77139-0.
9
Membrane stress increases cation permeability in red cells.
Biophys J. 1994 Nov;67(5):1876-81. doi: 10.1016/S0006-3495(94)80669-1.
10
Modeling nonlinear red cell elasticity.
Biophys J. 1998 Sep;75(3):1141-2. doi: 10.1016/S0006-3495(98)74032-9.

引用本文的文献

1
Optical tweezers in biomedical research - progress and techniques.
J Med Life. 2024 Nov;17(11):978-993. doi: 10.25122/jml-2024-0316.
2
In vitro investigation of the mechanics of fixed red blood cells based on optical trap micromanipulation and image analysis.
Biomed Opt Express. 2024 May 16;15(6):3783-3794. doi: 10.1364/BOE.523702. eCollection 2024 Jun 1.
3
Non-Invasive Dynamic Reperfusion of Microvessels Controlled by Optical Tweezers.
Front Bioeng Biotechnol. 2022 Jul 14;10:952537. doi: 10.3389/fbioe.2022.952537. eCollection 2022.
4
Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction.
Biophys Rev. 2019 Oct;11(5):765-782. doi: 10.1007/s12551-019-00599-y. Epub 2019 Oct 14.
5
Observations of Membrane Domain Reorganization in Mechanically Compressed Artificial Cells.
Chembiochem. 2019 Oct 15;20(20):2666-2673. doi: 10.1002/cbic.201900167. Epub 2019 Oct 1.
6
Study of in vitro RBCs membrane elasticity with AOD scanning optical tweezers.
Biomed Opt Express. 2016 Dec 19;8(1):384-394. doi: 10.1364/BOE.8.000384. eCollection 2017 Jan 1.
7
Cell mechanics in biomedical cavitation.
Interface Focus. 2015 Oct 6;5(5):20150018. doi: 10.1098/rsfs.2015.0018.
8
Buckling of a growing tissue and the emergence of two-dimensional patterns.
Math Biosci. 2013 Dec;246(2):229-41. doi: 10.1016/j.mbs.2013.09.008. Epub 2013 Oct 12.
9
An optical-manipulation technique for cells in physiological flows.
J Biol Phys. 2010 Mar;36(2):135-43. doi: 10.1007/s10867-009-9176-6. Epub 2009 Sep 29.
10
Nanomechanical characterization of red blood cells using optical tweezers.
J Mater Sci Mater Med. 2008 Apr;19(4):1529-35. doi: 10.1007/s10856-008-3382-9. Epub 2008 Jan 24.

本文引用的文献

1
Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study.
Biophys J. 1999 Dec;77(6):3085-95. doi: 10.1016/S0006-3495(99)77139-0.
2
Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models.
Biophys J. 1998 Sep;75(3):1573-83. doi: 10.1016/S0006-3495(98)74075-5.
3
Cell membrane mechanics.
Methods Cell Biol. 1998;55:157-71.
4
Influence of network topology on the elasticity of the red blood cell membrane skeleton.
Biophys J. 1997 May;72(5):2369-81. doi: 10.1016/S0006-3495(97)78882-9.
5
A possible mechanism determining the stability of spiculated red blood cells.
J Biomech. 1997 Jan;30(1):35-40. doi: 10.1016/s0021-9290(96)00100-5.
6
Aspects of the mechanics of lobed liposomes.
J Biomech Eng. 1996 Nov;118(4):482-8. doi: 10.1115/1.2796034.
7
The mechanics of axially symmetric liposomes.
J Biomech Eng. 1993 May;115(2):149-59. doi: 10.1115/1.2894115.
8
Mechanical function of dystrophin in muscle cells.
J Cell Biol. 1995 Feb;128(3):355-61. doi: 10.1083/jcb.128.3.355.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验