Suppr超能文献

利用来自嗜盐栖热放线菌的重组感官视紫红质II进行时间分辨吸收和光热测量。

Time-resolved absorption and photothermal measurements with recombinant sensory rhodopsin II from Natronobacterium pharaonis.

作者信息

Losi A, Wegener A A, Engelhard M, Gärtner W, Braslavsky S E

机构信息

Max-Planck-Institut für Strahlenchemie, D-45413 Mülheim an der Ruhr, Germany.

出版信息

Biophys J. 1999 Dec;77(6):3277-86. doi: 10.1016/S0006-3495(99)77158-4.

Abstract

Purified wild-type sensory rhodopsin II from Natronobacterium pharaonis (pSRII-WT) and its histidine-tagged analog (pSRII-His) were studied by laser-induced optoacoustic spectroscopy (LIOAS) and flash photolysis with optical detection. The samples were either dissolved in detergent or reconstituted into polar lipids from purple membrane (PML). The quantum yield for the formation of the long-lived state M(400) was determined as Phi(M) = 0.5 +/- 0.06 for both proteins. The structural volume change accompanying the production of K(510) as determined with LIOAS was DeltaV(R,1) </= 10 ml for both proteins, assuming Phi(K) >/= Phi(M), indicating that the His tag does not influence this early step of the photocycle. The medium has no influence on DeltaV(R,1), which is the largest so far measured for a retinal protein in this time range (<10 ns). This confirms the occurrence of conformational movements in pSRII for this step, as previously suggested by Fourier transform infrared spectroscopy. On the contrary, the decay of K(510) is an expansion in the detergent-dissolved sample and a contraction in PML. Assuming an efficiency of 1.0, DeltaV(R,2) = -3 ml/mol for pSRII-WT and -4.6 ml/mol for pSRII-His were calculated in PML, indicative of a small structural difference between the two proteins. The energy content of K(510) is also affected by the tag. It is E(K) = (88 +/- 13) for pSRII-WT and (134 +/- 11) kJ/mol for pSRII-His. A slight difference in the activation parameters for K(510) decay confirms an influence of the C-terminal His on this step. At variance with DeltaV(R,1), the opposite sign of DeltaV(R,2) in detergent and PML suggests the occurrence of solvation effects on the decay of K(510), which are probably due to a different interaction of the active site with the two dissolving media.

摘要

利用激光诱导光声光谱法(LIOAS)以及光检测闪光光解技术,对来自嗜盐栖热菌(pSRII-WT)的纯化野生型感官视紫红质II及其组氨酸标签类似物(pSRII-His)进行了研究。样品要么溶解在去污剂中,要么重构到来自紫膜(PML)的极性脂质中。两种蛋白质形成长寿命态M(400)的量子产率均确定为Phi(M) = 0.5 +/- 0.06。假设Phi(K) >= Phi(M),用LIOAS测定伴随K(510)产生的结构体积变化,两种蛋白质的DeltaV(R,1) <= 10 ml,这表明组氨酸标签不影响光循环的这一早期步骤。介质对DeltaV(R,1)没有影响,DeltaV(R,1)是目前在该时间范围内(<10 ns)对视网膜蛋白测量到的最大变化。这证实了如先前傅里叶变换红外光谱所表明的,pSRII在此步骤中发生了构象运动。相反,K(510)的衰减在溶解于去污剂的样品中是膨胀,而在PML中是收缩。假设效率为1.0,在PML中计算得出pSRII-WT的DeltaV(R,2) = -3 ml/mol,pSRII-His的DeltaV(R,2) = -4.6 ml/mol,这表明两种蛋白质之间存在微小的结构差异。K(510)的能量含量也受标签影响。pSRII-WT的E(K) = (88 +/- 13),pSRII-His的E(K) = (134 +/- 11) kJ/mol。K(510)衰减的活化参数存在轻微差异,证实了C末端组氨酸对该步骤的影响。与DeltaV(R,1)不同,去污剂和PML中DeltaV(R,2)的相反符号表明在K(510)衰减过程中存在溶剂化效应,这可能是由于活性位点与两种溶解介质的相互作用不同所致。

相似文献

3
Protonation changes during the photocycle of sensory rhodopsin II from Natronobacterium pharaonis.
FEBS Lett. 1996 Oct 21;395(2-3):195-8. doi: 10.1016/0014-5793(96)01041-1.
4
Resonance Raman spectroscopy of sensory rhodopsin II from Natronobacterium pharaonis.
FEBS Lett. 2000 Apr 28;472(2-3):263-6. doi: 10.1016/s0014-5793(00)01472-1.

引用本文的文献

1
Ultrafast Protein Dynamics Prior to Retinal Photoisomerization in Microbial Rhodopsins.
J Phys Chem Lett. 2025 Jun 12;16(23):5732-5738. doi: 10.1021/acs.jpclett.5c00623. Epub 2025 Jun 2.
2
Microbial and animal rhodopsins: structures, functions, and molecular mechanisms.
Chem Rev. 2014 Jan 8;114(1):126-63. doi: 10.1021/cr4003769. Epub 2013 Dec 23.
3
Reaction dynamics of halorhodopsin studied by time-resolved diffusion.
Biophys J. 2009 May 6;96(9):3724-34. doi: 10.1016/j.bpj.2008.12.3932.
4
Steric constraint in the primary photoproduct of sensory rhodopsin II is a prerequisite for light-signal transfer to HtrII.
Biochemistry. 2008 Jun 10;47(23):6208-15. doi: 10.1021/bi8003507. Epub 2008 May 15.
5
Laser-induced transient grating analysis of dynamics of interaction between sensory rhodopsin II D75N and the HtrII transducer.
Biophys J. 2007 Mar 15;92(6):2028-40. doi: 10.1529/biophysj.106.097493. Epub 2006 Dec 22.
7
Time-resolved detection of sensory rhodopsin II-transducer interaction.
Biophys J. 2004 Oct;87(4):2587-97. doi: 10.1529/biophysj.104.043521.

本文引用的文献

3
The transducer protein HtrII modulates the lifetimes of sensory rhodopsin II photointermediates.
Biophys J. 1998 Nov;75(5):2435-40. doi: 10.1016/S0006-3495(98)77687-8.
4
The structure and mechanism of the family of retinal proteins from halophilic archaea.
Curr Opin Struct Biol. 1998 Aug;8(4):489-500. doi: 10.1016/s0959-440x(98)80128-0.
7
Molecular mechanism of photosignaling by archaeal sensory rhodopsins.
Annu Rev Biophys Biomol Struct. 1997;26:223-58. doi: 10.1146/annurev.biophys.26.1.223.
8
The phytochromes: a biochemical mechanism of signaling in sight?
Bioessays. 1997 Jul;19(7):571-9. doi: 10.1002/bies.950190708.
9
Bio-Beads: an efficient strategy for two-dimensional crystallization of membrane proteins.
J Struct Biol. 1997 Apr;118(3):226-35. doi: 10.1006/jsbi.1997.3848.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验