Suppr超能文献

Kin28是与TFIIH相关的羧基末端结构域激酶,它有助于将mRNA加工机制招募到RNA聚合酶II上。

Kin28, the TFIIH-associated carboxy-terminal domain kinase, facilitates the recruitment of mRNA processing machinery to RNA polymerase II.

作者信息

Rodriguez C R, Cho E J, Keogh M C, Moore C L, Greenleaf A L, Buratowski S

机构信息

Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Mol Cell Biol. 2000 Jan;20(1):104-12. doi: 10.1128/MCB.20.1.104-112.2000.

Abstract

The cotranscriptional placement of the 7-methylguanosine cap on pre-mRNA is mediated by recruitment of capping enzyme to the phosphorylated carboxy-terminal domain (CTD) of RNA polymerase II. Immunoblotting suggests that the capping enzyme guanylyltransferase (Ceg1) is stabilized in vivo by its interaction with the CTD and that serine 5, the major site of phosphorylation within the CTD heptamer consensus YSPTSPS, is particularly important. We sought to identify the CTD kinase responsible for capping enzyme targeting. The candidate kinases Kin28-Ccl1, CTDK1, and Srb10-Srb11 can each phosphorylate a glutathione S-transferase-CTD fusion protein such that capping enzyme can bind in vitro. However, kin28 mutant alleles cause reduced Ceg1 levels in vivo and exhibit genetic interactions with a mutant ceg1 allele, while srb10 or ctk1 deletions do not. Therefore, only the TFIIH-associated CTD kinase Kin28 appears necessary for proper capping enzyme targeting in vivo. Interestingly, levels of the polyadenylation factor Pta1 are also reduced in kin28 mutants, while several other polyadenylation factors remain stable. Pta1 in yeast extracts binds specifically to the phosphorylated CTD, suggesting that this interaction may mediate coupling of polyadenylation and transcription.

摘要

7-甲基鸟苷帽在mRNA前体上的共转录定位是通过将加帽酶募集到RNA聚合酶II的磷酸化羧基末端结构域(CTD)来介导的。免疫印迹表明,加帽酶鸟苷酸转移酶(Ceg1)在体内通过与CTD的相互作用而稳定,并且CTD七聚体共有序列YSPTSPS内的主要磷酸化位点丝氨酸5尤为重要。我们试图鉴定负责靶向加帽酶的CTD激酶。候选激酶Kin28-Ccl1、CTDK1和Srb10-Srb11均可磷酸化谷胱甘肽S-转移酶-CTD融合蛋白,使得加帽酶能够在体外结合。然而,kin28突变等位基因在体内导致Ceg1水平降低,并与突变的ceg1等位基因表现出遗传相互作用,而srb10或ctk1缺失则不会。因此,只有与TFIIH相关的CTD激酶Kin28似乎是体内正确靶向加帽酶所必需的。有趣的是,kin28突变体中聚腺苷酸化因子Pta1的水平也降低,而其他几种聚腺苷酸化因子保持稳定。酵母提取物中的Pta1特异性结合磷酸化的CTD,表明这种相互作用可能介导聚腺苷酸化和转录的偶联。

相似文献

3
Mutual targeting of mediator and the TFIIH kinase Kin28.
J Biol Chem. 2004 Jul 9;279(28):29114-20. doi: 10.1074/jbc.M404426200. Epub 2004 May 4.
5
Dynamic association of capping enzymes with transcribing RNA polymerase II.
Genes Dev. 2000 Oct 1;14(19):2435-40. doi: 10.1101/gad.836300.
10
TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II.
Mol Cell. 2009 May 15;34(3):387-93. doi: 10.1016/j.molcel.2009.04.016.

引用本文的文献

1
Cyclin-dependent kinases: Masters of the eukaryotic universe.
Wiley Interdiscip Rev RNA. 2023 Sep 17;15(1):e1816. doi: 10.1002/wrna.1816.
2
Cotranscriptional RNA processing and modification in plants.
Plant Cell. 2023 May 29;35(6):1654-1670. doi: 10.1093/plcell/koac309.
3
Coupling Between Cell Cycle Progression and the Nuclear RNA Polymerases System.
Front Mol Biosci. 2021 Aug 2;8:691636. doi: 10.3389/fmolb.2021.691636. eCollection 2021.
4
UniProt-Related Documents (UniReD): assisting wet lab biologists in their quest on finding novel counterparts in a protein network.
NAR Genom Bioinform. 2020 Feb 11;2(1):lqaa005. doi: 10.1093/nargab/lqaa005. eCollection 2020 Mar.
5
A combinatorial view of old and new RNA polymerase II modifications.
Transcription. 2020 Apr;11(2):66-82. doi: 10.1080/21541264.2020.1762468. Epub 2020 May 13.
6
Transcriptional responses of biofilm cells to fluconazole are modulated by the carbon source.
NPJ Biofilms Microbiomes. 2020 Jan 23;6:4. doi: 10.1038/s41522-020-0114-5. eCollection 2020.
7
8
Interplay of mRNA capping and transcription machineries.
Biosci Rep. 2020 Jan 31;40(1). doi: 10.1042/BSR20192825.
9
The Neurospora RNA polymerase II kinase CTK negatively regulates catalase expression in a chromatin context-dependent manner.
Environ Microbiol. 2020 Jan;22(1):76-90. doi: 10.1111/1462-2920.14821. Epub 2019 Oct 21.
10
The capping enzyme facilitates promoter escape and assembly of a follow-on preinitiation complex for reinitiation.
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22573-22582. doi: 10.1073/pnas.1905449116. Epub 2019 Oct 7.

本文引用的文献

1
2
RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo.
Mol Cell. 1999 Jun;3(6):697-705. doi: 10.1016/s1097-2765(01)80002-2.
3
Activating phosphorylation of the Kin28p subunit of yeast TFIIH by Cak1p.
Mol Cell Biol. 1999 Jul;19(7):4774-87. doi: 10.1128/MCB.19.7.4774.
5
Phosphorylated RNA polymerase II stimulates pre-mRNA splicing.
Genes Dev. 1999 May 15;13(10):1234-9. doi: 10.1101/gad.13.10.1234.
8
Cak1 is required for Kin28 phosphorylation and activation in vivo.
Mol Cell Biol. 1998 Nov;18(11):6365-73. doi: 10.1128/MCB.18.11.6365.
9
RNA polymerase II is an essential mRNA polyadenylation factor.
Nature. 1998 Sep 3;395(6697):93-6. doi: 10.1038/25786.
10
Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases.
Mol Cell. 1998 Jul;2(1):43-53. doi: 10.1016/s1097-2765(00)80112-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验