Kannt A, Pfitzner U, Ruitenberg M, Hellwig P, Ludwig B, Mäntele W, Fendler K, Michel H
Max-Planck-Institut für Biophysik, Abteilung Molekulare Membranbiologie, Heinrich-Hoffmann-Strasse 7, D-60528, Germany.
J Biol Chem. 1999 Dec 31;274(53):37974-81. doi: 10.1074/jbc.274.53.37974.
The effect of a single site mutation of Arg-54 to methionine in Paracoccus denitrificans cytochrome c oxidase was studied using a combination of optical spectroscopy, electrochemical and rapid kinetics techniques, and time-resolved measurements of electrical membrane potential. The mutation resulted in a blue-shift of the heme a alpha-band by 15 nm and partial occupation of the low-spin heme site by heme O. Additionally, there was a marked decrease in the midpoint potential of the low-spin heme, resulting in slow reduction of this heme species. A stopped-flow investigation of the reaction with ferrocytochrome c yielded a kinetic difference spectrum resembling that of heme a(3). This observation, and the absence of transient absorbance changes at the corresponding wavelength of the low-spin heme, suggests that, in the mutant enzyme, electron transfer from Cu(A) to the binuclear center may not occur via heme a but that instead direct electron transfer to the high-spin heme is the dominating process. This was supported by charge translocation measurements where Deltapsi generation was completely inhibited in the presence of KCN. Our results thus provide an example for how the interplay between protein and cofactors can modulate the functional properties of the enzyme complex.
利用光谱学、电化学和快速动力学技术以及电膜电位的时间分辨测量相结合的方法,研究了反硝化副球菌细胞色素c氧化酶中精氨酸54位点单一位点突变为甲硫氨酸的影响。该突变导致血红素aα带蓝移15 nm,且低自旋血红素位点被血红素O部分占据。此外,低自旋血红素的中点电位显著降低,导致该血红素物种的还原速度减慢。对与亚铁细胞色素c反应的停流研究产生了一个类似于血红素a(3)的动力学差异光谱。这一观察结果,以及在低自旋血红素相应波长处没有瞬态吸光度变化,表明在突变酶中,电子从Cu(A)转移到双核中心可能不是通过血红素a进行的,而是直接转移到高自旋血红素是主要过程。这一点得到了电荷转移测量的支持,在氰化钾存在的情况下,Δψ的产生被完全抑制。因此,我们的结果提供了一个例子,说明蛋白质和辅因子之间的相互作用如何调节酶复合物的功能特性。