Rünger T M, Emmert S, Schadendorf D, Diem C, Epe B, Hellfritsch D
Department of Dermatology, Georg-August University, Göttingen, Germany.
J Invest Dermatol. 2000 Jan;114(1):34-9. doi: 10.1046/j.1523-1747.2000.00844.x.
Resistance to chemotherapy is a common phenomenon in malignant melanoma. In order to assess the role of altered DNA repair in chemoresistant melanoma, we investigated different DNA repair pathways in one parental human melanoma line (MeWo) and in sublines of MeWo selected in vitro for drug resistance against four commonly used drugs (cisplatin, fotemustine, etoposide, and vindesine). Host cell reactivation assays with the plasmid pRSVcat were used to assess processing of different DNA lesions. With ultraviolet-irradiated plasmids, no significant differences were found, indicating a normal (nucleotide excision) repair of DNA photoproducts. With singlet oxygen-treated plasmid, the fotemustine- and cisplatin-resistant lines exhibited a significantly increased (base excision) repair of oxidative DNA damage. With fotemustine-treated plasmid, the fotemustine-resistant subline did not exhibit an increased repair of directly fotemustine-induced DNA damage. Similar results were obtained with cisplatin-induced DNA crosslinks in the cisplatin-resistant line. The fotemustine- and etoposide-resistant sublines have been shown to exhibit a reduced expression of genes involved in DNA mismatch repair. We used a "host cell microsatellite stability assay" with the plasmid pZCA29 and found a 2.0-fold to 2.5-fold increase of microsatellite frameshift mutations (p < or = 0.002) in the two resistant sublines. This indicates microsatellite instability, the hallmark of an impaired DNA mismatch repair. The increased repair of oxidative DNA damage might mediate an increased chemoresistance through an improved repair of drug-induced DNA damage. In contrast, a reduced DNA mismatch repair might confer resistance by preventing futile degradation of newly synthesized DNA opposite alkylation damage, or by an inability to detect such damage and subsequent inability to undergo DNA-damage-induced apoptosis.
对化疗的耐药性是恶性黑色素瘤中的常见现象。为了评估DNA修复改变在化疗耐药性黑色素瘤中的作用,我们研究了一种亲本人类黑色素瘤细胞系(MeWo)以及在体外筛选出的对四种常用药物(顺铂、福莫司汀、依托泊苷和长春地辛)具有耐药性的MeWo亚系中的不同DNA修复途径。使用质粒pRSVcat进行宿主细胞再激活试验,以评估不同DNA损伤的处理情况。对于紫外线照射的质粒,未发现显著差异,表明DNA光产物的修复正常(核苷酸切除修复)。对于单线态氧处理的质粒,福莫司汀和顺铂耐药细胞系对氧化性DNA损伤的(碱基切除)修复显著增加。对于福莫司汀处理的质粒,福莫司汀耐药亚系对福莫司汀直接诱导的DNA损伤的修复未增加。在顺铂耐药细胞系中,顺铂诱导的DNA交联也得到了类似结果。已证明福莫司汀和依托泊苷耐药亚系中参与DNA错配修复的基因表达降低。我们使用质粒pZCA29进行了“宿主细胞微卫星稳定性试验”,发现两个耐药亚系中的微卫星移码突变增加了2.0倍至2.5倍(p≤0.002)。这表明存在微卫星不稳定性,这是DNA错配修复受损的标志。氧化性DNA损伤修复的增加可能通过改善药物诱导的DNA损伤修复来介导化疗耐药性的增加。相反,DNA错配修复的降低可能通过防止新合成的DNA与烷基化损伤相对处的无效降解,或通过无法检测到这种损伤以及随后无法进行DNA损伤诱导的凋亡来赋予耐药性。