Hall G F, Yao J
Department of Biological Sciences, University of Massachusetts, Lowell, Massachusetts 01854, USA.
Microsc Res Tech. 2000 Jan 1;48(1):32-46. doi: 10.1002/(SICI)1097-0029(20000101)48:1<32::AID-JEMT5>3.0.CO;2-C.
The CNS of the sea lamprey (Petromyzon marinus) contains giant, individually identifiable neurons that can be microinjected intracellularly in the living animal. We have used the unique accessibility of this system to investigate the role played by serine/threonine kinases and phosphatases in regulating cytoskeletal stability in identified reticulospinal neurons (ABCs) in situ. Injection of broad spectrum kinase and phosphatase inhibitors induce marked changes in ABC gross morphology and in the extent and morphology of sprouts induced by axotomy. The kinase inhibitor K-252a causes regenerating sprouts to be longer and narrower than those seen in control preparations, and significantly reduces the diameters of axon stumps; this latter effect is similar to the effect of microinjecting anti neurofilament (NF) antibodies. By contrast, the phosphatase inhibitor okadaic acid (OA) causes the selective disruption of axonal integrity, blocking axonal regeneration and causing axon stump retraction in axotomized ABCs. The microtubule (MT) disrupting drug colchicine has an effect similar but less marked than OA on ABC axonal morphology. Both OA and colchicine also induce the formation of large somatodendritic swellings in axotomized (but not intact) ABCs by 1-3 weeks post-injection. Immunocytochemical analyses indicate that both colchicine and OA treatments result in the destabilization of MTs and the phosphorylation of NFs, while OA induces the accumulation of phosphorylated tau protein in some dendritic swellings. Control injections of inactive substances have none of these effects. These results suggest that OA does not have its primary effect on NF assembly at the doses used, but may block axonal regeneration by inducing a prolonged disruption of axonal MTs, possibly via an indirect mechanism involving the hyperphosphorylation of tau and other MAPs. K-252a, on the other hand, may interfere with NF assembly and sidearm phosphorylation, thereby reducing NF transport into both axon stumps and sprouts and in turn reducing sprout diameter. The implications of these results for the respective roles of MTs, MAPs, and NFs in axonal regeneration in the vertebrate CNS are discussed.
海七鳃鳗(Petromyzon marinus)的中枢神经系统包含巨大的、可逐个识别的神经元,这些神经元能够在活体动物体内进行细胞内微量注射。我们利用该系统的独特可及性,研究丝氨酸/苏氨酸激酶和磷酸酶在原位调节已识别的网状脊髓神经元(ABCs)细胞骨架稳定性中所起的作用。注射广谱激酶和磷酸酶抑制剂会引起ABCs总体形态以及轴突切断诱导的新芽的范围和形态发生显著变化。激酶抑制剂K - 252a使再生新芽比对照制剂中的更长更窄,并显著减小轴突残端的直径;后一种效应类似于微量注射抗神经丝(NF)抗体的效应。相比之下,磷酸酶抑制剂冈田酸(OA)会导致轴突完整性的选择性破坏,阻断轴突再生,并导致轴突切断的ABCs中的轴突残端回缩。破坏微管(MT)的药物秋水仙碱对ABCs轴突形态的影响与OA相似但不那么明显。OA和秋水仙碱在注射后1 - 3周还会在轴突切断(但非完整)的ABCs中诱导形成巨大的体树突肿胀。免疫细胞化学分析表明,秋水仙碱和OA处理都会导致MTs不稳定和NFs磷酸化,而OA会在一些树突肿胀中诱导磷酸化tau蛋白的积累。注射无活性物质的对照则没有这些效应。这些结果表明,在所使用的剂量下,OA对NF组装没有主要影响,但可能通过诱导轴突MTs的长期破坏来阻断轴突再生,这可能是通过涉及tau和其他微管相关蛋白(MAPs)过度磷酸化的间接机制实现的。另一方面,K - 252a可能会干扰NF组装和侧臂磷酸化,从而减少NF向轴突残端和新芽的运输,进而减小新芽直径。本文讨论了这些结果对于MTs、MAPs和NFs在脊椎动物中枢神经系统轴突再生中各自作用的意义。