Suppr超能文献

在剪接条件下被人类SC35识别的外显子剪接增强子基序。

Exonic splicing enhancer motif recognized by human SC35 under splicing conditions.

作者信息

Liu H X, Chew S L, Cartegni L, Zhang M Q, Krainer A R

机构信息

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724-2208, USA.

出版信息

Mol Cell Biol. 2000 Feb;20(3):1063-71. doi: 10.1128/MCB.20.3.1063-1071.2000.

Abstract

Exonic splicing enhancers (ESEs) are important cis elements required for exon inclusion. Using an in vitro functional selection and amplification procedure, we have identified a novel ESE motif recognized by the human SR protein SC35 under splicing conditions. The selected sequences are functional and specific: they promote splicing in nuclear extract or in S100 extract complemented by SC35 but not by SF2/ASF. They can also function in a different exonic context from the one used for the selection procedure. The selected sequences share one or two close matches to a short and highly degenerate octamer consensus, GRYYcSYR. A score matrix was generated from the selected sequences according to the nucleotide frequency at each position of their best match to the consensus motif. The SC35 score matrix, along with our previously reported SF2/ASF score matrix, was used to search the sequences of two well-characterized splicing substrates derived from the mouse immunoglobulin M (IgM) and human immunodeficiency virus tat genes. Multiple SC35 high-score motifs, but only two widely separated SF2/ASF motifs, were found in the IgM C4 exon, which can be spliced in S100 extract complemented by SC35. In contrast, multiple high-score motifs for both SF2/ASF and SC35 were found in a variant of the Tat T3 exon (lacking an SC35-specific silencer) whose splicing can be complemented by either SF2/ASF or SC35. The motif score matrix can help locate SC35-specific enhancers in natural exon sequences.

摘要

外显子剪接增强子(ESEs)是外显子包含所必需的重要顺式元件。通过体外功能选择和扩增程序,我们鉴定出了一种在剪接条件下被人SR蛋白SC35识别的新型ESE基序。所选序列具有功能性且具有特异性:它们能促进在核提取物或由SC35补充而非SF2/ASF补充的S100提取物中的剪接。它们在与用于选择程序的外显子不同的背景下也能发挥作用。所选序列与一个短的、高度简并的八聚体共有序列GRYYcSYR有一到两个紧密匹配。根据所选序列与共有基序最佳匹配处每个位置的核苷酸频率生成了一个评分矩阵。SC35评分矩阵与我们先前报道的SF2/ASF评分矩阵一起,用于搜索源自小鼠免疫球蛋白M(IgM)和人类免疫缺陷病毒tat基因的两个特征明确的剪接底物的序列。在IgM C4外显子中发现了多个SC35高分基序,但只有两个相隔很远的SF2/ASF基序,该外显子在由SC35补充的S100提取物中可以进行剪接。相比之下,在Tat T3外显子的一个变体(缺乏SC35特异性沉默子)中发现了SF2/ASF和SC35的多个高分基序,其剪接可以由SF2/ASF或SC35补充。基序评分矩阵有助于在天然外显子序列中定位SC35特异性增强子。

相似文献

1
Exonic splicing enhancer motif recognized by human SC35 under splicing conditions.
Mol Cell Biol. 2000 Feb;20(3):1063-71. doi: 10.1128/MCB.20.3.1063-1071.2000.
2
hnRNP A1 and the SR proteins ASF/SF2 and SC35 have antagonistic functions in splicing of beta-tropomyosin exon 6B.
J Biol Chem. 2004 Sep 10;279(37):38249-59. doi: 10.1074/jbc.M405377200. Epub 2004 Jun 18.
5
The human splicing factors ASF/SF2 and SC35 possess distinct, functionally significant RNA binding specificities.
EMBO J. 1995 Jul 17;14(14):3540-51. doi: 10.1002/j.1460-2075.1995.tb07360.x.
7
Mapping the SF2/ASF binding sites in the bovine growth hormone exonic splicing enhancer.
J Biol Chem. 2000 Sep 15;275(37):29170-7. doi: 10.1074/jbc.M001126200.
9
Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins.
Genes Dev. 1998 Jul 1;12(13):1998-2012. doi: 10.1101/gad.12.13.1998.

引用本文的文献

1
Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis.
Exp Hematol. 2024 Dec;140:104655. doi: 10.1016/j.exphem.2024.104655. Epub 2024 Oct 10.
2
Molecular impact of mutations in RNA splicing factors in cancer.
Mol Cell. 2024 Oct 3;84(19):3667-3680. doi: 10.1016/j.molcel.2024.07.019. Epub 2024 Aug 14.
7
Innovative Approaches for Characterization of Genes and Proteins.
Front Genet. 2022 May 18;13:865182. doi: 10.3389/fgene.2022.865182. eCollection 2022.
8
Dysregulation and therapeutic targeting of RNA splicing in cancer.
Nat Cancer. 2022 May;3(5):536-546. doi: 10.1038/s43018-022-00384-z. Epub 2022 May 27.
9
Acute Exercise Regulates hTERT Gene Expression and Alternative Splicing in the hTERT-BAC Transgenic Mouse Model.
Med Sci Sports Exerc. 2022 Jun 1;54(6):931-943. doi: 10.1249/MSS.0000000000002868. Epub 2022 Feb 8.

本文引用的文献

1
Mammalian in vitro splicing assays.
Methods Mol Biol. 1999;118:315-21. doi: 10.1385/1-59259-676-2:315.
2
Preparation of HeLa cell nuclear and cytosolic S100 extracts for in vitro splicing.
Methods Mol Biol. 1999;118:309-14. doi: 10.1385/1-59259-676-2:309.
3
Evidence for the function of an exonic splicing enhancer after the first catalytic step of pre-mRNA splicing.
Proc Natl Acad Sci U S A. 1999 Sep 14;96(19):10655-60. doi: 10.1073/pnas.96.19.10655.
8
Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins.
Genes Dev. 1998 Jul 1;12(13):1998-2012. doi: 10.1101/gad.12.13.1998.
10
Displaying the information contents of structural RNA alignments: the structure logos.
Comput Appl Biosci. 1997 Dec;13(6):583-6. doi: 10.1093/bioinformatics/13.6.583.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验