Suppr超能文献

宇航员的生物剂量测定:一项真正的挑战。

Biological dosimetry for astronauts: a real challenge.

作者信息

Testard I, Sabatier L

机构信息

CEA, Commissariat a l'Energie Atomique, DSV/DRR, Laboratoire de Radiobiologie et Oncologie, BP6, Fontenay-aux-Roses, France.

出版信息

Mutat Res. 1999 Dec 6;430(2):315-26. doi: 10.1016/s0027-5107(99)00144-x.

Abstract

Manned space missions recently increased in number and duration, thus it became important to estimate the biological risks encountered by astronauts. They are exposed to cosmic and galactic rays, a complex mixture of different radiations. In addition to the measurements realized by physical dosimeters, it becomes essential to estimate real biologically effective doses and compare them to physical doses. Biological dosimetry of radiation exposures has been widely performed using cytogenetic analysis of chromosomes. This approach has been used for many years in order to estimate absorbed doses in accidental or chronic overexposures of humans. In addition to conventional techniques (Giemsa or FPG staining, R- or G-banding), faster and accurate means of analysis have been developed (fluorescence in situ hybridization [FISH] painting). As results accumulate, it appears that strong interindividual variability exists in the basal level of aberrations. Moreover, some aberrations such as translocations exhibit a high background level. Radiation exposures seem to induce variability between individual responses. Its extent strongly differs with the mode of exposure, the doses delivered, the kind of radiation, and the cytogenetic method used. This paper aims to review the factors that may influence the reliability of cytogenetic dosimetry. The emphasis is on the exposure to high linear energy transfer (LET) particles in space as recent studies demonstrated interindividual variations in doses estimated from aberration analysis after long-term space missions. In addition to the problem of dose estimates, the heterogeneity of cosmic radiation raises questions relating to the real numbers of damaged cells in an individual, and potential long-term risks. Actually, densely ionizing particles are extremely potent to induce late chromosomal instability, and again, interindividual variability exists in the expression of damage.

摘要

最近,载人航天任务的数量和持续时间有所增加,因此估算宇航员所面临的生物风险变得至关重要。他们会受到宇宙射线和银河射线的照射,这是一种由不同辐射组成的复杂混合物。除了通过物理剂量计进行测量外,估算实际的生物有效剂量并将其与物理剂量进行比较也变得至关重要。辐射暴露的生物剂量测定已广泛使用染色体的细胞遗传学分析来进行。这种方法已经使用多年,用于估算人类在意外或慢性过度暴露情况下的吸收剂量。除了传统技术(吉姆萨或FPG染色、R或G显带)外,还开发了更快、更准确的分析方法(荧光原位杂交[FISH]绘图)。随着结果的积累,似乎在畸变的基础水平上存在很强的个体间差异。此外,一些畸变,如易位,表现出较高的背景水平。辐射暴露似乎会导致个体反应之间的差异。其程度因暴露方式、所给予的剂量、辐射种类和所使用的细胞遗传学方法而有很大不同。本文旨在综述可能影响细胞遗传学剂量测定可靠性的因素。重点是在太空中暴露于高线性能量传递(LET)粒子,因为最近的研究表明,在长期太空任务后,根据畸变分析估算的剂量存在个体间差异。除了剂量估算问题外,宇宙辐射的异质性还引发了有关个体中受损细胞的实际数量以及潜在长期风险的问题。实际上,密集电离粒子极具诱导晚期染色体不稳定的能力,而且在损伤表达方面同样存在个体间差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验