Nasir M S, Fahrni C J, Suhy D A, Kolodsick K J, Singer C P, O'Halloran T V
Department of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA.
J Biol Inorg Chem. 1999 Dec;4(6):775-83. doi: 10.1007/s007750050350.
Fluorescent cell-permeant compounds based on 6-methoxy-8-p-toluenesulfonamido-quinoline, TSQ, are potentially powerful probes of intracellular zinc chemistry; however, the structure, thermodynamics, and stoichiometry of the metal complexes, and the molecular basis of Zn(II) recognition, remain open issues. To address these, we report the first structural characterization of a Zn(II) complex of a TSQ derivative, namely 2-methyl-6-methoxy-8-p-toluenesulfonamido-quinoline (3) and describe its unusual coordination chemistry. The crystal structure of the fluorescent complex of 3 with zinc reveals a 2:1 stoichiometry wherein bidentate coordination of two nitrogens from each ligand gives rise to a highly distorted tetrahedral Zn(II) center. Both sulfonamido groups in the zinc complex are tilted away from zinc to make room for coordination of the amide nitrogens. Zn-O(2) and Zn-O(4) distances are essentially nonbonding (3.06 and 3.10 A, respectively). The bond angles [N(1)-Zn-N(2) 83.5 degrees and N(3)-Zn-N(4) 83.0 degrees] are quite small relative to the 109 degrees angle of an ideal tetrahedral center. This result provides an insight into the zinc-binding mode of the TSQ derivative zinquin, in which a methyl group replaces the hydrogen in the 2-position of the quinoline ring. The methyl group and sulfonamide oxygen atoms clearly hinder formation of both square planar and octahedral complexes. We also show here that the Zn(II) complex of 3 in DMSO-water (80/20 w/w) exhibits an overall binding stability (log beta 2 = 18.24 +/- 0.02) similar to zinquin. Fluorescence microscopy suggests that each of these members of this family demarks a similar set of Zn(II)-enriched compartments that are common to all eukaryotic cells examined to date, and further shows that the ester function is not required for observation of these ubiquitous Zn-loaded compartments. The combined structural, thermodynamic, and physiological results provide a basis for design of other Zn(II)-specific membrane permeant probes with a range of Zn(II) affinities and photophysical properties.
基于6-甲氧基-8-对甲苯磺酰胺基喹啉(TSQ)的荧光细胞渗透性化合物可能是细胞内锌化学的强大探针;然而,金属配合物的结构、热力学和化学计量,以及Zn(II)识别的分子基础,仍然是悬而未决的问题。为了解决这些问题,我们报道了TSQ衍生物2-甲基-6-甲氧基-8-对甲苯磺酰胺基喹啉(3)的Zn(II)配合物的首次结构表征,并描述了其不同寻常的配位化学。3与锌的荧光配合物的晶体结构显示化学计量比为2:1,其中每个配体的两个氮原子的双齿配位产生了一个高度扭曲的四面体Zn(II)中心。锌配合物中的两个磺酰胺基团都从锌处倾斜开,为酰胺氮的配位留出空间。Zn-O(2)和Zn-O(4)距离基本上是非键合的(分别为3.06和3.10 Å)。相对于理想四面体中心的109°角,键角[N(1)-Zn-N(2) 83.5°和N(3)-Zn-N(4) 83.0°]相当小。这一结果为了解TSQ衍生物锌喹(zinquin)的锌结合模式提供了见解,其中喹啉环2位的氢被甲基取代。甲基和磺酰胺氧原子明显阻碍了平面正方形和八面体配合物的形成。我们还在此表明,3在DMSO-水(80/20 w/w)中的Zn(II)配合物表现出与锌喹相似的整体结合稳定性(log β2 = 18.24 ± 0.02)。荧光显微镜检查表明,该家族的每个成员都标记了一组相似的富含Zn(II)的区室,这些区室是迄今为止所有被检查的真核细胞共有的,并且进一步表明,观察这些普遍存在的锌负载区室不需要酯功能。综合的结构、热力学和生理学结果为设计具有一系列Zn(II)亲和力和光物理性质的其他Zn(II)特异性膜渗透性探针提供了基础。