Birck C, Mourey L, Gouet P, Fabry B, Schumacher J, Rousseau P, Kahn D, Samama J P
Groupe de Cristallographie Biologique, CNRS-IPBS, Toulouse, France.
Structure. 1999 Dec 15;7(12):1505-15. doi: 10.1016/s0969-2126(00)88341-0.
A variety of bacterial adaptative cellular responses to environmental stimuli are mediated by two-component signal transduction pathways. In these phosphorelay cascades, histidine kinases transphosphorylate a conserved aspartate in the receiver domain, a conserved module in the response regulator superfamily. The main effect of this phosphorylation is to alter the conformation of the response regulator in order to modulate its biological function. The response regulator FixJ displays a typical modular arrangement, with a phosphorylatable N-terminal receiver domain and a C-terminal DNA-binding domain. In the symbiotic bacterium Sinorhizobium meliloti, phosphorylation of this response regulator activates transcription of nitrogen-fixation genes.
The crystal structures of the phosphorylated and of the unphosphorylated N-terminal receiver domain of FixJ (FixJN) were solved at 2.3 A and 2.4 A resolution, respectively. They reveal the environment of the phosphoaspartate in the active site and the specific conformational changes leading to activation of the response regulator. Phosphorylation of the conserved aspartate induces major structural changes in the beta 4-alpha 4 loop, and in the signaling surface alpha 4-beta 5 that mediates dimerization of the phosphorylated full-length response regulator. A site-directed mutant at this protein-protein interface decreases the affinity of the phosphorylated response regulator for the fixK promoter tenfold.
The cascade of phosphorylation-induced conformational changes in FixJN illustrates the role of conserved residues in stabilizing the phosphoryl group in the active site, triggering the structural transition and achieving the post-phosphorylation signaling events. We propose that these phosphorylation-induced conformational changes underly the activation of response regulators in general.
多种细菌对环境刺激的适应性细胞反应是由双组分信号转导途径介导的。在这些磷酸化传递级联反应中,组氨酸激酶将磷酸基团转移到应答调节子超家族中保守模块——接收结构域内一个保守的天冬氨酸上。这种磷酸化的主要作用是改变应答调节子的构象,从而调节其生物学功能。应答调节子FixJ呈现典型的模块化结构,具有一个可磷酸化的N端接收结构域和一个C端DNA结合结构域。在共生细菌苜蓿中华根瘤菌中,这种应答调节子的磷酸化激活了固氮基因的转录。
分别以2.3 Å和2.4 Å的分辨率解析了磷酸化和未磷酸化的FixJ N端接收结构域(FixJN)的晶体结构。它们揭示了活性位点中磷酸化天冬氨酸的环境以及导致应答调节子激活的特定构象变化。保守天冬氨酸的磷酸化在β4-α4环以及介导磷酸化全长应答调节子二聚化的信号表面α4-β5中诱导了主要的结构变化。在这个蛋白质-蛋白质界面处的一个定点突变使磷酸化应答调节子与fixK启动子的亲和力降低了10倍。
FixJN中磷酸化诱导的构象变化级联反应说明了保守残基在稳定活性位点中的磷酰基、触发结构转变以及实现磷酸化后信号事件方面的作用。我们认为这些磷酸化诱导的构象变化通常是应答调节子激活的基础。