Ansaldi M, Simon G, Lepelletier M, Méjean V
Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, 13402 Marseille Cedex 20, France.
J Bacteriol. 2000 Feb;182(4):961-6. doi: 10.1128/JB.182.4.961-966.2000.
In the presence of trimethylamine N-oxide (TMAO), the TorS-TorR two-component regulatory system induces the torCAD operon, which encodes the TMAO respiratory system of Escherichia coli. The sensor protein TorS detects TMAO and transphosphorylates the response regulator TorR which, in turn, activates transcription of torCAD. The torR gene and the torCAD operon are divergently transcribed, and the short torR-torC intergenic region contains four direct repeats (the tor boxes) which proved to be TorR binding sites. The tor box 1-box 2 region covers the torR transcription start site and constitutes a TorR high-affinity binding site, whereas box 3 and box 4 correspond to low-affinity binding sites. By using torR-lacZ operon fusions in different genetic backgrounds, we showed that the torR gene is negatively autoregulated. Surprisingly, TorR autoregulation is TMAO independent and still occurs in a torS mutant. In addition, this negative regulation involves only the TorR high-affinity binding site. Together, these data suggest that phosphorylated as well as unphosphorylated TorR binds the box 1-box 2 region in vivo, thus preventing RNA polymerase from binding to the torR promoter whatever the growth conditions. By changing the spacing between box 2 and box 3, we demonstrated that the DNA motifs of the high- and low-affinity binding sites must be close to each other and located on the same side of the DNA helix to allow induction of the torCAD operon. Thus, prior TorR binding to the box 1-box 2 region seems to allow cooperative binding of phosphorylated TorR to box 3 and box 4.
在氧化三甲胺(TMAO)存在的情况下,TorS-TorR双组分调节系统会诱导torCAD操纵子,该操纵子编码大肠杆菌的TMAO呼吸系统。传感器蛋白TorS检测到TMAO后会使反应调节因子TorR发生磷酸化,进而激活torCAD的转录。torR基因和torCAD操纵子是反向转录的,短的torR-torC基因间区域包含四个直接重复序列(tor框),这些序列被证明是TorR的结合位点。tor框1-框2区域覆盖torR转录起始位点,构成TorR高亲和力结合位点,而框3和框4则对应低亲和力结合位点。通过在不同遗传背景下使用torR-lacZ操纵子融合,我们发现torR基因存在负自调控。令人惊讶的是,TorR的自调控不依赖于TMAO,在torS突变体中仍然会发生。此外,这种负调控仅涉及TorR高亲和力结合位点。这些数据共同表明,无论生长条件如何,磷酸化和未磷酸化的TorR在体内都会结合框1-框2区域,从而阻止RNA聚合酶与torR启动子结合。通过改变框2和框3之间的间距,我们证明高亲和力和低亲和力结合位点的DNA基序必须彼此靠近并位于DNA螺旋的同一侧,才能诱导torCAD操纵子。因此,TorR先结合到框1-框2区域似乎能使磷酸化的TorR协同结合到框3和框4。