Suppr超能文献

Role of the amino acid 45 residue in reduced folate carrier function and ion-dependent transport as characterized by site-directed mutagenesis.

作者信息

Zhao R, Gao F, Wang P J, Goldman I D

机构信息

Department of Medicine, Albert Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, Bronx, New York, USA.

出版信息

Mol Pharmacol. 2000 Feb;57(2):317-23.

Abstract

In previous reports, an E45K mutation in reduced folate carrier (RFC1) resulted in marked substrate-specific changes in folate binding and the induction of an obligatory inorganic anion requirement for carrier function. In this study, site-directed mutagenesis was employed to further characterize the role of glutamate-45 in carrier function by replacement with glutamine, arginine, aspartate, leucine, or tryptophan followed by tranfection of the mutated cDNAs into the MTX(r)A line, which lacks a functional endogenous carrier. Alterations in transport function with amino acid substitutions at this residue were not charge related. Hence, E45Q, E45R, and E45K all 1) increased carrier affinity for 5-formyltetrahydrofolate approximately 4-fold, 2) increased affinity for folic acid approximately 6- to 10-fold, 3) did not change affinity for 5-methyltetrahydrofolate, and 4) except for E45R decreased affinity for methotrexate (2- to 3-fold). In contrast, mutations E45D, E45L, and E45W generally reduced affinity for all these folates except for folic acid. Finally, chloride-dependent influx was only noted in the E45R mutant. These data further substantiate the important role that glutamate-45 plays in the selectivity of binding of folates to RFC1 and establish that it is the addition of a positive charge at this site and not the loss of a negative charge that results in the induced anion dependence. These and other studies indicate that mutations in the first transmembrane domain can have a markedly selective impact on the affinity of RFC1 for folate compounds and in particularly a highly salutary effect on binding of the oxidized folate, folic acid.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验