Suppr超能文献

Adoptive transfer of nuclear factor-kappaB-inactive macrophages to the glomerulus.

作者信息

Kitamura M

机构信息

Glomerular Bioengineering Unit, Department of Medicine, University College London Medical School, London, United Kingdom.

出版信息

Kidney Int. 2000 Feb;57(2):709-16. doi: 10.1046/j.1523-1755.2000.00893.x.

Abstract

BACKGROUND

Macrophages have been regarded as "blackguards" in the generation of glomerular injury. However, it is still unclear what kind of cellular machinery is responsible for their pathogenic actions. To explore this issue, this investigation aims at developing a novel strategy using adoptive transfer of "loss-of-function" macrophages to the glomerulus. As a prototypal investigation, this study examines a role for nuclear factor-kappaB (NF-kappaB) in effector actions of macrophages within the glomerular microenvironment.

METHODS

NF-kappaB-inactive macrophages, NIKMACNR, were created by transduction of NR8383 rat macrophages with retrovirus encoding a super-repressor mutant of IkappaBalpha, IkappaBalphaM. The effector functions of NIKMACNR cells on resident cells were evaluated by coculture, cross-feeding, and in vivo macrophage transfer.

RESULTS

Rat mesangial cells cocultured with control macrophages showed abundant expression of activation markers, including monocyte chemoattractant protein-1, stromelysin, and gelatinase B. In contrast, coculture with NIKMACNR macrophages induced only modest gene expression. Similarly, culture medium conditioned by activated, control macrophages triggered mesangial cells and isolated glomeruli to express the activation markers, whereas the stimulatory effect was not observed in medium conditioned by NIKMACNR macrophages. To evaluate effector actions of NIKMACNR macrophages in the glomerulus, control macrophages and NIKMACNR cells were transferred into normal rat glomeruli via renal artery injection. After the transfer of control macrophages, substantial induction of the activation marker stromelysin was observed in resident glomerular cells. This induction was dramatically diminished in the glomeruli transferred with NIKMACNR macrophages.

CONCLUSIONS

Inactivation of NF-kappaB in macrophages effectively disrupted paracrine, stimulatory loops from macrophages to resident glomerular cells. A combination of "loss-of-function" strategies with the technique for adoptive cell transfer is thus useful to explore pathophysiologic roles for certain machinery of macrophages within the glomerulus.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验