Suppr超能文献

Influence of topography and specimen preparation on backscattered electron images of bone.

作者信息

Vajda E G, Humphrey S, Skedros J G, Bloebaum R D

机构信息

Bone and Joint Research Laboratory, VA Medical Center, Salt Lake City, Utah 84148, USA.

出版信息

Scanning. 1999 Nov-Dec;21(6):379-87. doi: 10.1002/sca.4950210604.

Abstract

Backscattered electron (BSE) images of bone exhibit graylevel contrast between adjacent lamellae. Mathematical models suggest that interlamellar contrast in BSE images is an artifact due to topographic irregularities. However, little experimental evidence has been published to support these models, and it is not clear whether submicron topographical features will alter BSE graylevels. The goal of this study was to determine the effects of topography on BSE image mean graylevels and graylevel histogram widths using conventional specimen preparation techniques. White-light interferometry and quantitative BSE imaging were used to investigate the relationship between the BSE signal and specimen roughness. Backscattered electron image graylevel histogram widths correlated highly with surface roughness in rough preparations of homogeneous materials. The relationship between BSE histogram width and surface roughness was specimen dependent. Specimen topography coincided with the lamellar patterns within the bone tissue. Diamond micromilling reduced average surface roughness when compared with manual polishing techniques but did not significantly affect BSE graylevel histogram width. The study suggests that topography is a confounding factor in quantitative BSE analysis of bone. However, there is little quantitative difference between low-to-moderate magnification BSE images of bone specimens prepared by conventional polishing or diamond micromilling.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验