King C R, DiPetrillo T A, Wazer D E
Department of Radiation Oncology, New England Medical Center, Tufts University School of Medicine, Boston, MA, USA.
Int J Radiat Oncol Biol Phys. 2000 Jan 1;46(1):165-72. doi: 10.1016/s0360-3016(99)00406-x.
To determine, on the basis of radiobiological models, optimal modalities of radiotherapy for localized prostate cancer, and to provide a rational basis for therapeutic decisions.
An algorithm based on extensions to the linear-quadratic (LQ) cell survival model is constructed for fractionated and protracted irradiation. These radiobiological models include prostate tumor cell line-derived LQ parameters, clonogen repopulation, repair of sublethal damage, hypoxia, and radioisotope decay. In addition, dose inhomogeneities for both IMRT and brachytherapy (125I and 103Pd) from patient-derived Dose Volume Histograms (DVH), as well as dose escalation, are incorporated. Three risk groups are defined in terms of sets of biologic parameters tailored to correspond to clinical risk groups as follows: Favorable-iPSA <10 and bGS < or =6 and stage T2; Intermediate-one parameter increased; and Unfavorable-two or more parameters increased. Tumor control probabilities (TCP) are predicted for conventional external beam radiotherapy (EBRT, including 3D-CRT), intensity modulated radiotherapy (IMRT), and permanent brachytherapy.
Brachytherapy is less susceptible to variations in alpha/beta than EBRT and more susceptible to variations in clonogen potential doubling time (Tp). Our models predict TCP consistent with the bNED results from recent dose escalation trials and long-term outcomes from brachytherapy. TCP from IMRT are systematically superior to those from conventional fractionated RT, and suggests its possible use in dose escalation without additional dose to surrounding normal tissues. For potentially rapidly dividing tumors (Tp < 30 days) 103Pd yields superior cell kill compared with 125I, but for very slowly proliferating tumors the converse is suggested. Brachytherapy predicts equivalent or superior TCP to dose escalated EBRT. For unfavorable risk tumors, combined 45 Gy EBRT+brachytherapy boost predicts superior TCP than with either modality alone.
The radiobiological models presented suggest a rational basis for choosing among several radiotherapeutic modalities based on biologic risk factors. In addition, they suggest that IMRT may potentially be superior to 3D-CRT in allowing dose escalation without increased morbidity, and that brachytherapy, as monotherapy or as boost, may achieve superior tumor control compared with dose escalation 3D-CRT. The latter conclusion is supported by clinical data.
基于放射生物学模型确定局限性前列腺癌的最佳放射治疗方式,并为治疗决策提供合理依据。
构建了一种基于线性二次(LQ)细胞存活模型扩展的算法,用于分次和延长照射。这些放射生物学模型包括前列腺肿瘤细胞系衍生的LQ参数、克隆原再增殖、亚致死损伤修复、缺氧和放射性同位素衰变。此外,纳入了来自患者剂量体积直方图(DVH)的调强放疗(IMRT)和近距离放疗(125I和103Pd)的剂量不均匀性以及剂量递增。根据为对应临床风险组量身定制的生物学参数集定义了三个风险组,如下:有利组——iPSA<10且bGS≤6且分期为T2;中间组——一个参数增加;不利组——两个或更多参数增加。预测了传统外照射放疗(EBRT,包括三维适形放疗(3D-CRT))、调强放疗(IMRT)和永久性近距离放疗的肿瘤控制概率(TCP)。
与EBRT相比,近距离放疗对α/β变化的敏感性较低,而对克隆原潜在倍增时间(Tp)变化的敏感性较高。我们的模型预测的TCP与近期剂量递增试验的生化无病(bNED)结果以及近距离放疗的长期结果一致。IMRT的TCP系统地优于传统分次放疗的TCP,这表明其可能用于剂量递增而无需对周围正常组织增加剂量。对于潜在快速分裂的肿瘤(Tp<30天),与125I相比,103Pd产生更好的细胞杀伤效果,但对于增殖非常缓慢的肿瘤,情况则相反。近距离放疗预测的TCP与剂量递增的EBRT相当或更好。对于不利风险肿瘤,45 Gy EBRT联合近距离放疗增敏预测的TCP优于单独使用任何一种方式。
所呈现的放射生物学模型为基于生物学风险因素在几种放射治疗方式中进行选择提供了合理依据。此外,它们表明IMRT在允许剂量递增而不增加发病率方面可能优于3D-CRT,并且近距离放疗作为单一疗法或增敏治疗,与剂量递增三维适形放疗相比,可能实现更好的肿瘤控制。后一结论得到了临床数据的支持。