Green H, Roy B, Grant S, Burnett M, Tupling R, Otto C, Pipe A, McKenzie D
Department of Kinesiology, University of Waterloo, Waterloo N2L3G1, Ontario K1Y4E9.
J Appl Physiol (1985). 2000 Feb;88(2):634-40. doi: 10.1152/jappl.2000.88.2.634.
To investigate the hypothesis that acclimatization to altitude would result in a downregulation in muscle Na(+)-K(+)-ATPase pump concentration, tissue samples were obtained from the vastus lateralis muscle of six volunteers (5 males and 1 female), ranging in age from 24 to 35 yr, both before and within 3 days after a 21-day expedition to the summit of Mount Denali, Alaska (6,194 m). Na(+)-K(+)-ATPase, measured by the [(3)H]ouabain-binding technique, decreased by 13.8% [348 +/- 12 vs. 300 +/- 7.6 (SE) pmol/g wet wt; P < 0.05]. No changes were found in the maximal activities (mol. kg protein(-1). h(-1)) of the mitochondrial enzymes, succinic dehydrogenase (3.63 +/- 0.20 vs. 3.25 +/- 0.23), citrate synthase (4. 76 +/- 0.44 vs. 4.94 +/- 0.44), and malate dehydrogenase (12.6 +/- 1. 8 vs. 12.7 +/- 1.2). Similarly, the expedition had no effect on any of the histochemical properties examined, namely fiber-type distribution (types I, IIA, IIB, IC, IIC, IIAB), area, capillarization, and succinic dehydrogenase activity. Peak aerobic power (52.3 +/- 2.1 vs. 50.6 +/- 1.9 ml. kg(-1). min(-1)) and body mass (76.9 +/- 3.7 vs. 75.5 +/- 2.9 kg) were also unaffected. We concluded that acclimatization to altitude results in a downregulation in muscle Na(+)-K(+)-ATPase pump concentration, which occurs without changes in oxidative potential and other fiber-type histochemical properties.