Foster K A, Gilbert S P
Department of Biological Sciences, 518 Langley Hall, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
Biochemistry. 2000 Feb 22;39(7):1784-91. doi: 10.1021/bi991500b.
Ncd is a kinesin-related motor protein which drives movement to the minus-end of microtubules. The kinetics of Ncd were investigated using the dimeric construct MC1 (Leu(209)-Lys(700)) expressed in Escherichia coli strain BL21(DE) as a nonfusion protein [Chandra, R., Salmon, E. D., Erickson, H. P., Lockhart, A., and Endow, S. A. (1993) J. Biol. Chem. 268, 9005-9013]. Acid chemical quench flow methods were used to measure directly the rate of ATP hydrolysis, and stopped-flow kinetic methods were used to determine the kinetics of mantATP binding, mantADP release, dissociation of MC1 from the microtubule, and binding of MC1 to the microtubule. The results define a minimal kinetic mechanism, M.N + ATP M.N.ATP M.N.ADP.P N. ADP.P N.ADP + P M.N.ADP M.N + ADP, where N, M, and P represent Ncd, microtubules, and inorganic phosphate respectively, with k(+1) = 2.3 microM(-1) s(-1), k(+2) =23 s(-1), k(+3) =13 s(-1), k(+5)= 0.7 microM(-)(1) s(-)(1), and k(+6) = 3.7 s(-)(1). Phosphate release (k(+4)) was not measured directly although it is assumed to be fast relative to ADP release because Ncd is purified with ADP tightly bound at the active site. ATP hydrolysis occurs at 23 s(-)(1) prior to Ncd dissociation at 13 s(-)(1). The pathway for ATP-promoted detachment (steps 1-3) of Ncd from the microtubule is comparable to kinesin's. However, there are two major differences between the mechanisms of Ncd and kinesin. In contrast to kinesin, mantADP release for Ncd at 3.7 s(-)(1) is the slowest step in the pathway and is believed to limit steady-state turnover. Additionally, the burst amplitude observed in the pre-steady-state acid quench experiments is stoichiometric, indicating that Ncd, in contrast to kinesin, is not processive for ATP hydrolysis.
Ncd是一种与驱动蛋白相关的运动蛋白,它驱动微管负端的运动。使用在大肠杆菌BL21(DE)菌株中表达的二聚体构建体MC1(Leu(209)-Lys(700))作为非融合蛋白来研究Ncd的动力学[钱德拉,R.,萨尔蒙,E. D.,埃里克森,H. P.,洛克哈特,A.,和恩多,S. A.(1993年)《生物化学杂志》268,9005 - 9013]。采用酸性化学淬灭流动法直接测量ATP水解速率,采用停流动力学方法测定mantATP结合、mantADP释放、MC1从微管解离以及MC1与微管结合的动力学。结果定义了一个最小动力学机制,M.N + ATP⇌M.N.ATP⇌M.N.ADP.P⇌N. ADP.P⇌N.ADP + P⇌M.N.ADP⇌M.N + ADP,其中N、M和P分别代表Ncd、微管和无机磷酸,k(+1) = 2.3 μM⁻¹ s⁻¹,k(+2) =2³ s⁻¹,k(+3) =13 s⁻¹,k(+5)= 0.7 μM⁻¹ s⁻¹,k(+6) = 3.7 s⁻¹。尽管由于Ncd是在活性位点紧密结合ADP的情况下纯化的,所以假定磷酸释放(k(+4))相对于ADP释放较快,但未直接测量。ATP水解在13 s⁻¹的Ncd解离之前以23 s⁻¹的速率发生。Ncd从微管的ATP促进解离途径(步骤1 - 3)与驱动蛋白的类似。然而,Ncd和驱动蛋白的机制有两个主要区别。与驱动蛋白相反,Ncd的mantADP释放速率为3.7 s⁻¹,是该途径中最慢的步骤,并且被认为限制了稳态周转。此外,在稳态前酸性淬灭实验中观察到的爆发幅度是化学计量的,这表明与驱动蛋白不同,Ncd在ATP水解方面不是持续性的。