Suppr超能文献

建模驱动蛋白-13 MCAK 和驱动蛋白-14 Cik1-Kar3 分子马达的定向运动。

Modeling processive motion of kinesin-13 MCAK and kinesin-14 Cik1-Kar3 molecular motors.

机构信息

Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.

出版信息

Protein Sci. 2021 Oct;30(10):2092-2105. doi: 10.1002/pro.4165. Epub 2021 Aug 20.

Abstract

Kinesin-13 MCAK, which is composed of two identical motor domains, can undergo unbiased one-dimensional diffusion on microtubules. Kinesin-14 Cik1-Kar3, which is composed of a Kar3 motor domain and a Cik1 motor homology domain with no ATPase activity, can move processively toward the minus end of microtubules. Here, we present a model for the diffusion of MCAK homodimer and a model for the processive motion of Cik1-Kar3 heterodimer. Although the two dimeric motors show different domain composition, in the models it is proposed that the two motors use the similar physical mechanism to move processively. With the models, the dynamics of the two dimers is studied analytically. The theoretical results for MCAK reproduce quantitatively the available experimental data about diffusion constant and lifetime of the motor bound to microtubule in different nucleotide states. The theoretical results for Cik1-Kar3 reproduce quantitatively the available experimental data about load dependence of velocity and explain consistently the available experimental data about effects of the exchange and mutation of the motor homology domain on the velocity of the heterodimer. Moreover, predicted results for other aspects of the dynamics of the two dimers are provided.

摘要

动力蛋白-13 MCAK 由两个相同的马达结构域组成,能够在微管上进行无偏一维扩散。动力蛋白-14 Cik1-Kar3 由一个 Kar3 马达结构域和一个没有 ATP 酶活性的 Cik1 马达同源结构域组成,能够向微管的负端进行连续运动。在这里,我们提出了 MCAK 同源二聚体扩散的模型和 Cik1-Kar3 异二聚体连续运动的模型。尽管这两种二聚体马达具有不同的结构域组成,但在模型中提出,这两种马达使用相似的物理机制进行连续运动。通过模型,对两种二聚体的动力学进行了分析。对于 MCAK 的理论结果定量地再现了关于在不同核苷酸状态下与微管结合的马达扩散常数和寿命的现有实验数据。对于 Cik1-Kar3 的理论结果定量地再现了关于速度的负载依赖性的现有实验数据,并一致地解释了关于马达同源结构域的交换和突变对异二聚体速度的影响的现有实验数据。此外,还提供了关于这两种二聚体动力学的其他方面的预测结果。

相似文献

1
Modeling processive motion of kinesin-13 MCAK and kinesin-14 Cik1-Kar3 molecular motors.
Protein Sci. 2021 Oct;30(10):2092-2105. doi: 10.1002/pro.4165. Epub 2021 Aug 20.
2
Modeling study of kinesin-13 MCAK microtubule depolymerase.
Eur Biophys J. 2024 Aug;53(5-6):339-354. doi: 10.1007/s00249-024-01718-8. Epub 2024 Aug 2.
3
Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends.
Curr Biol. 2005 Aug 9;15(15):1420-7. doi: 10.1016/j.cub.2005.06.066.
5
Modeling Study of the Dynamics of Kinesin-14 Molecular Motors.
J Phys Chem B. 2022 Nov 3;126(43):8720-8734. doi: 10.1021/acs.jpcb.2c05820. Epub 2022 Oct 21.
6
Neck rotation and neck mimic docking in the noncatalytic Kar3-associated protein Vik1.
J Biol Chem. 2012 Nov 23;287(48):40292-301. doi: 10.1074/jbc.M112.416529. Epub 2012 Oct 7.
7
The ATPase pathway that drives the kinesin-14 Kar3Vik1 powerstroke.
J Biol Chem. 2012 Oct 26;287(44):36673-82. doi: 10.1074/jbc.M112.395590. Epub 2012 Sep 12.
8
Mechanistic analysis of the Saccharomyces cerevisiae kinesin Kar3.
J Biol Chem. 2004 Dec 3;279(49):51354-61. doi: 10.1074/jbc.M406268200. Epub 2004 Sep 21.
9
Common mechanistic themes for the powerstroke of kinesin-14 motors.
J Struct Biol. 2013 Nov;184(2):335-44. doi: 10.1016/j.jsb.2013.09.020. Epub 2013 Oct 4.
10
Kar3Vik1, a member of the kinesin-14 superfamily, shows a novel kinesin microtubule binding pattern.
J Cell Biol. 2012 Jun 25;197(7):957-70. doi: 10.1083/jcb.201201132.

引用本文的文献

1
Biased movement of monomeric kinesin-3 KLP-6 explained by a symmetric Brownian ratchet model.
Biophys J. 2025 Jan 7;124(1):205-214. doi: 10.1016/j.bpj.2024.11.3312. Epub 2024 Nov 26.
2
Modeling study of kinesin-13 MCAK microtubule depolymerase.
Eur Biophys J. 2024 Aug;53(5-6):339-354. doi: 10.1007/s00249-024-01718-8. Epub 2024 Aug 2.
3

本文引用的文献

2
A model of processive walking and slipping of kinesin-8 molecular motors.
Sci Rep. 2021 Apr 13;11(1):8081. doi: 10.1038/s41598-021-87532-0.
3
A common chemomechanical coupling model for orphan and conventional kinesin molecular motors.
Biophys Chem. 2020 Sep;264:106427. doi: 10.1016/j.bpc.2020.106427. Epub 2020 Jul 8.
4
Theoretical Analysis of Dynamics of Kinesin Molecular Motors.
ACS Omega. 2020 Mar 10;5(11):5721-5730. doi: 10.1021/acsomega.9b03738. eCollection 2020 Mar 24.
5
Non-tight and tight chemomechanical couplings of biomolecular motors under hindering loads.
J Theor Biol. 2020 Apr 7;490:110173. doi: 10.1016/j.jtbi.2020.110173. Epub 2020 Jan 23.
6
8
All-atom molecular dynamics simulations reveal how kinesin transits from one-head-bound to two-heads-bound state.
Proteins. 2020 Apr;88(4):545-557. doi: 10.1002/prot.25833. Epub 2019 Oct 13.
9
ATP-Concentration- and Force-Dependent Chemomechanical Coupling of Kinesin Molecular Motors.
J Chem Inf Model. 2019 Jan 28;59(1):360-372. doi: 10.1021/acs.jcim.8b00577. Epub 2018 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验