Drummond G R, Cai H, Davis M E, Ramasamy S, Harrison D G
Division of Cardiology, Emory University, Atlanta, GA 30322, USA.
Circ Res. 2000 Feb 18;86(3):347-54. doi: 10.1161/01.res.86.3.347.
Diverse stimuli, including shear stress, cyclic strain, oxidized LDL, hyperglycemia, and cell growth, modulate endothelial nitric oxide synthase (eNOS) expression. Although seemingly unrelated, these may all alter cellular redox state, suggesting that reactive oxygen intermediates might modulate eNOS expression. The present study was designed to test this hypothesis. Exposure of bovine aortic endothelial cells for 24 hours to paraquat, a superoxide (O(2)(-*))-generating compound, did not affect eNOS mRNA levels. However, cotreatment with paraquat and either Cu(2+)/Zn(2+) superoxide dismutase or the superoxide dismutase mimetic tetrakis(4-benzoic acid)porphyrin chloride increased eNOS mRNA by 2.3- and 2.2-fold, respectively, implicating a role for H(2)O(2). Direct addition of 100 and 150 micromol/L H(2)O(2) caused increases in bovine aortic endothelial cell eNOS mRNA that were dependent on concentration (ie, 3.1- and 5.2-fold increases) and time, and elevated eNOS protein expression and enzyme activity, accordingly. Nuclear run-on and 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole-chase studies showed that H(2)O(2) caused a 3.0-fold increase in eNOS gene transcription and a 2.8-fold increase in eNOS mRNA half-life. Induction of eNOS by H(2)O(2) was not affected by the hydroxyl radical scavenger DMSO, mannitol, or N-tert-butyl-alpha-phenylnitrone, but it was inhibited by the antioxidants N-acetylcysteine, ebselen, and exogenously added catalase. Unlike H(2)O(2), the 4.0-fold induction of eNOS by shear stress (15 dyne/cm(2) for 6 hours) was not inhibited by N-acetylcysteine or exogenous catalase. In conclusion, H(2)O(2) increases eNOS expression through transcriptional and post-transcriptional mechanisms. Although H(2)O(2) does not mediate shear-dependent eNOS regulation, it is likely to be involved in regulation of eNOS expression in response to other physiological and/or pathophysiological stimuli.
多种刺激因素,包括剪切应力、循环应变、氧化型低密度脂蛋白、高血糖和细胞生长,均可调节内皮型一氧化氮合酶(eNOS)的表达。尽管这些因素看似无关,但它们都可能改变细胞的氧化还原状态,这表明活性氧中间体可能调节eNOS的表达。本研究旨在验证这一假设。将牛主动脉内皮细胞暴露于百草枯(一种产生超氧化物(O₂⁻*)的化合物)24小时,并未影响eNOS mRNA水平。然而,百草枯与铜/锌超氧化物歧化酶或超氧化物歧化酶模拟物四(4 - 苯甲酸)卟啉氯化物共同处理分别使eNOS mRNA增加了2.3倍和2.2倍,这表明H₂O₂发挥了作用。直接添加100和150 μmol/L的H₂O₂可使牛主动脉内皮细胞的eNOS mRNA增加,且这种增加依赖于浓度(即分别增加3.1倍和5.2倍)和时间,并相应提高了eNOS蛋白表达和酶活性。核转录和5,6 - 二氯 - 1 - β - D - 呋喃核糖基苯并咪唑追踪研究表明,H₂O₂使eNOS基因转录增加了3.0倍,eNOS mRNA半衰期增加了2.8倍。H₂O₂对eNOS的诱导不受羟基自由基清除剂二甲基亚砜、甘露醇或N - 叔丁基 - α - 苯基硝酮的影响,但被抗氧化剂N - 乙酰半胱氨酸、依布硒仑和外源性添加的过氧化氢酶抑制。与H₂O₂不同,剪切应力(15达因/平方厘米,持续6小时)对eNOS的4.0倍诱导不受N - 乙酰半胱氨酸或外源性过氧化氢酶的抑制。总之,H₂O₂通过转录和转录后机制增加eNOS的表达。尽管H₂O₂不介导剪切应力依赖的eNOS调节,但它可能参与了对其他生理和/或病理生理刺激的eNOS表达调节。