Hack A A, Groh M E, McNally E M
Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA.
Microsc Res Tech. 2000;48(3-4):167-80. doi: 10.1002/(SICI)1097-0029(20000201/15)48:3/4<167::AID-JEMT5>3.0.CO;2-T.
Muscular dystrophy is a heterogeneous genetic disease that affects skeletal and cardiac muscle. The genetic defects associated with muscular dystrophy include mutations in dystrophin and its associated glycoproteins, the sarcoglycans. Furthermore, defects in dystrophin have been shown to cause a disruption of the normal expression and localization of the sarcoglycan complex. Thus, abnormalities of sarcoglycan are a common molecular feature in a number of dystrophies. By combining biochemistry, molecular cell biology, and human and mouse genetics, a growing understanding of the sarcoglycan complex is emerging. Sarcoglycan appears to be an important, independent mediator of dystrophic pathology in both skeletal muscle and heart. The absence of sarcoglycan leads to alterations of membrane permeability and apoptosis, two shared features of a number of dystrophies. beta-sarcoglycan and delta-sarcoglycan may form the core of the sarcoglycan subcomplex with alpha- and gamma-sarcoglycan less tightly associated to this core. The relationship of epsilon-sarcoglycan to the dystrophin-glycoprotein complex remains unclear. Animals lacking alpha-, gamma- and delta-sarcoglycan have been described and provide excellent opportunities for further investigation of the function of sarcoglycan. Dystrophin with dystroglycan and laminin may be a mechanical link between the actin cytoskeleton and the extracellular matrix. By positioning itself in close proximity to dystrophin and dystroglycan, sarcoglycan may function to couple mechanical and chemical signals in striated muscle. Sarcoglycan may be an independent signaling or regulatory module whose position in the membrane is determined by dystrophin but whose function is carried out independent of the dystrophin-dystroglycan-laminin axis.
肌肉萎缩症是一种影响骨骼肌和心肌的异质性遗传病。与肌肉萎缩症相关的基因缺陷包括肌营养不良蛋白及其相关糖蛋白(肌聚糖)的突变。此外,已证明肌营养不良蛋白的缺陷会导致肌聚糖复合物的正常表达和定位受到破坏。因此,肌聚糖异常是多种肌营养不良症的常见分子特征。通过结合生物化学、分子细胞生物学以及人类和小鼠遗传学,人们对肌聚糖复合物的认识日益加深。肌聚糖似乎是骨骼肌和心脏中营养不良病理的重要独立介质。肌聚糖的缺失会导致膜通透性改变和细胞凋亡,这是多种肌营养不良症的两个共同特征。β-肌聚糖和δ-肌聚糖可能形成肌聚糖亚复合物的核心,而α-和γ-肌聚糖与该核心的结合较松散。ε-肌聚糖与肌营养不良蛋白-糖蛋白复合物的关系仍不清楚。已经描述了缺乏α-、γ-和δ-肌聚糖的动物,这为进一步研究肌聚糖的功能提供了绝佳机会。肌营养不良蛋白与肌营养不良聚糖和层粘连蛋白可能是肌动蛋白细胞骨架与细胞外基质之间的机械连接。通过紧邻肌营养不良蛋白和肌营养不良聚糖定位,肌聚糖可能在横纹肌中发挥耦合机械信号和化学信号的作用。肌聚糖可能是一个独立的信号或调节模块,其在膜中的位置由肌营养不良蛋白决定,但其功能独立于肌营养不良蛋白-肌营养不良聚糖-层粘连蛋白轴进行。