Suppr超能文献

大鼠未成熟和成熟卵母细胞的基础低温生物学:二甲基亚砜存在下的水力传导率、二甲基亚砜渗透率及其活化能。

Fundamental cryobiology of rat immature and mature oocytes: hydraulic conductivity in the presence of Me(2)SO, Me(2)SO permeability, and their activation energies.

作者信息

Agca Y, Liu J, Critser E S, Critser J K

机构信息

Cryobiology Research Institute, Wells Center for Pediatric Research, Riley Hospital for Children, Indianapolis, Indiana 46202, USA.

出版信息

J Exp Zool. 2000 Apr 1;286(5):523-33.

Abstract

The hydraulic conductivity in the presence of dimethyl sulfoxide Me(2)SO (L(p)(Me(2)SO)), Me(2)SO (P(Me(2)SO)) permeability and reflection coefficient (sigma) of immature (germinal vesicle; GV) and mature (metaphase II; MII) rat oocytes were determined at various temperatures. A temperature controlled micropipette perfusion technique was used to conduct experiments at five different temperatures (30, 20, 10, 4, and -3 degrees C). Kedem and Katchalsky membrane transport theory was used to describe the cell volume kinetics. The cell volumetric changes of oocytes were calculated from the measurement of two oocyte diameters, assuming a spherical shape. The activation energies (E(a)) of L(p)(Me(2)SO) and P(Me(2)SO) were calculated using the Arrhenius equation. Activation energies of L(p)(Me(2)SO) for GV and MII oocytes were 34.30 Kcal/mol and 16.29 Kcal/mol, respectively; while the corresponding E(a)s of P(Me(2)SO) were 19.87 Kcal/mol and 21.85 Kcal/mol, respectively. These permeability parameters were then used to calculate cell water loss in rat oocytes during cooling at subzero temperatures. Based on these values, the predicted optimal cooling rate required to maintain extra- and intracellular water in near equilibrium for rat GV stage oocytes was found to be between 0.05 degrees C/min and 0. 025; while for rat MII oocytes, the corresponding cooling rate was 1 degrees C/min. These data suggest that standard cooling rates used for mouse oocytes (e.g., 0.5-1 degrees C/min) can also be employed to cryopreserve rat MII oocytes. However, the corresponding cooling rate required to avoid damage must be significantly slower for the GV stage rat oocyte. J. Exp. Zool. 286:523-533, 2000.

摘要

在不同温度下测定了未成熟(生发泡期;GV)和成熟(中期II;MII)大鼠卵母细胞在二甲基亚砜(Me(2)SO)存在时的水力传导率(L(p)(Me(2)SO))、Me(2)SO渗透率(P(Me(2)SO))和反射系数(σ)。采用温度控制的微量移液器灌注技术在五个不同温度(30、20、10、4和 -3℃)下进行实验。使用凯德姆和卡查尔斯基膜运输理论描述细胞体积动力学。假设卵母细胞为球形,根据测量的两个卵母细胞直径计算其体积变化。使用阿伦尼乌斯方程计算L(p)(Me(2)SO)和P(Me(2)SO)的活化能(E(a))。GV期和MII期卵母细胞的L(p)(Me(2)SO)活化能分别为34.30千卡/摩尔和16.29千卡/摩尔;而P(Me(2)SO)的相应E(a)分别为19.87千卡/摩尔和21.85千卡/摩尔。然后使用这些渗透率参数计算大鼠卵母细胞在零下温度冷却过程中的细胞失水情况。基于这些值,发现维持大鼠GV期卵母细胞细胞内外水接近平衡所需的预测最佳冷却速率在0.05℃/分钟至0.025之间;而对于大鼠MII期卵母细胞,相应的冷却速率为1℃/分钟。这些数据表明,用于小鼠卵母细胞的标准冷却速率(例如0.5 - 1℃/分钟)也可用于冷冻保存大鼠MII期卵母细胞。然而,对于GV期大鼠卵母细胞,避免损伤所需的相应冷却速率必须显著更慢。《实验动物学杂志》286:523 - 533,2000年。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验