Suppr超能文献

群体药代动力学荟萃分析中的研究间变异性:何时以及如何进行估计?

Inter-study variability in population pharmacokinetic meta-analysis: when and how to estimate it?

作者信息

Laporte-Simitsidis S, Girard P, Mismetti P, Chabaud S, Decousus H, Boissel J P

机构信息

Clinical Pharmacology Unit, University Hospital Saint-Etienne Bellevue, Pavillon 5, 42055 Saint-Etienne Cedex 02, France.

出版信息

J Pharm Sci. 2000 Feb;89(2):155-67. doi: 10.1002/(SICI)1520-6017(200002)89:2<155::AID-JPS3>3.0.CO;2-2.

Abstract

Population pharmacokinetic analysis is being increasingly applied to individual data collected in different studies and pooled in a single database. However, individual pharmacokinetic parameters may change randomly from one study to another. In this article, we show by simulation that neglecting inter-study variability (ISV) does not introduce any bias for the fixed parameters or for the residual variability but may result in an overestimation of inter-individual (IIV) variability, depending on the magnitude of the ISV. Two random study-effect (RSE) estimation methods were investigated: (i) estimation, in a single step, of the three-nested random effects (inter-study, inter-individual and residual variability); (ii) estimation of residual variability and a mixture of ISV and IIV in the first step, then separation of ISV from IIV in the second. The one-stage RSE model performed well for population parameter assessment, whereas, the two-stage model yielded good estimates of IIV only with a rich sampling design. Finally, irrespective of the method used, ISV estimates were valid only when a large number of studies was pooled. The analysis of one real data set illustrated the use of an ISV model. It showed that the fixed parameter estimates were not modified, whether an RSE model was used or not, probably because of the homogeneity of the experimental designs of the studies, and suggest no study-effect in this example.

摘要

群体药代动力学分析越来越多地应用于不同研究中收集并汇总到单个数据库中的个体数据。然而,个体药代动力学参数可能因研究不同而随机变化。在本文中,我们通过模拟表明,忽略研究间变异性(ISV)不会对固定参数或残差变异性产生任何偏差,但可能会导致个体间(IIV)变异性的高估,这取决于ISV的大小。研究了两种随机研究效应(RSE)估计方法:(i)一步估计三个嵌套随机效应(研究间、个体间和残差变异性);(ii)第一步估计残差变异性以及ISV和IIV的混合,然后在第二步中将ISV与IIV分离。单阶段RSE模型在群体参数评估方面表现良好,而两阶段模型仅在丰富采样设计下能对IIV给出良好估计。最后,无论使用何种方法,只有在汇总大量研究时,ISV估计才有效。对一个实际数据集的分析说明了ISV模型的应用。结果表明,无论是否使用RSE模型,固定参数估计都没有改变,这可能是由于研究的实验设计具有同质性,并且在这个例子中表明没有研究效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验