Kjellsson Maria C, Jönsson Siv, Karlsson Mats O
Division of Pharmacokinetics and Drug Therapy, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
AAPS J. 2004 Aug 11;6(3):e19. doi: 10.1208/aapsj060319.
A significant bias in parameters, estimated with the proportional odds model using the software NONMEM, has been reported. Typically, this bias occurs with ordered categorical data, when most of the observations are found at one extreme of the possible outcomes. The aim of this study was to assess, through simulations, the performance of the Back-Step Method (BSM), a novel approach for obtaining unbiased estimates when the standard approach provides biased estimates. BSM is an iterative method involving sequential simulation-estimation steps. BSM was compared with the standard approach in the analysis of a 4-category ordered variable using the Laplacian method in NONMEM. The bias in parameter estimates and the accuracy of model predictions were determined for the 2 methods on 3 conditions: (1) a nonskewed distribution of the response with low interindividual variability (IIV), (2) a skewed distribution with low IIV, and (3) a skewed distribution with high IIV. An increase in bias with increasing skewness and IIV was shown in parameters estimated using the standard approach in NONMEM. BSM performed without appreciable bias in the estimates under the 3 conditions, and the model predictions were in good agreement with the original data. Each BSM estimation represents a random sample of the population; hence, repeating the BSM estimation reduces the imprecision of the parameter estimates. The BSM is an accurate estimation method when the standard modeling approach in NONMEM gives biased estimates.
据报道,使用NONMEM软件通过比例优势模型估计的参数存在显著偏差。通常,当大多数观测值出现在可能结果的一个极端时,这种偏差会出现在有序分类数据中。本研究的目的是通过模拟评估反向逐步法(BSM)的性能,当标准方法提供有偏差估计时,它是一种获得无偏差估计的新方法。BSM是一种涉及顺序模拟估计步骤的迭代方法。在NONMEM中使用拉普拉斯方法分析一个4分类有序变量时,将BSM与标准方法进行了比较。在三种情况下确定了两种方法的参数估计偏差和模型预测的准确性:(1)反应的非偏态分布且个体间变异性(IIV)较低,(2)偏态分布且IIV较低,以及(3)偏态分布且IIV较高。在NONMEM中使用标准方法估计的参数显示,随着偏度和IIV的增加偏差也增加。在这三种情况下,BSM在估计中没有明显偏差,并且模型预测与原始数据高度一致。每次BSM估计都代表总体的一个随机样本;因此,重复BSM估计可降低参数估计的不精确性。当NONMEM中的标准建模方法给出有偏差估计时,BSM是一种准确的估计方法。