Suppr超能文献

Isoflurane action in the spinal cord blunts electroencephalographic and thalamic-reticular formation responses to noxious stimulation in goats.

作者信息

Antognini J F, Wang X W, Carstens E

机构信息

Department of Anesthesiology and Pain Medicine, University of California, Davis 95616, USA.

出版信息

Anesthesiology. 2000 Feb;92(2):559-66. doi: 10.1097/00000542-200002000-00040.

Abstract

BACKGROUND

Isoflurane depresses the electroencephalographic (EEG) activity and exerts part of its anesthetic effect in the spinal cord. The authors hypothesized that isoflurane would indirectly depress the EEG and subcortical response to noxious stimulation in part by a spinal cord action.

METHODS

Depth electrodes were inserted into the midbrain reticular formation (MRF) and thalamus of six of seven isoflurane-anesthetized goats, and needle-electrodes were placed into the skull periosteum. In five of seven goats, an MRF microelectrode recorded single-unit activity. The jugular veins and carotid arteries were isolated to permit cranial bypass and differential isoflurane delivery. A noxious mechanical stimulus (1 min) was applied to a forelimb dewclaw at each of two cranial-torso isoflurane combinations: 1.1+/-0.3%-1.2+/-0.3% and 1.1+/-0.3-0.3+/-0.1% (mean +/- SD).

RESULTS

When cranial-torso isoflurane was 1.1-1.2%, the noxious stimulus did not alter the EEG. When torso isoflurane was decreased to 0.3%, the noxious stimulus activated the MRF, thalamic, and bifrontal-hemispheric regions (decreased high-amplitude, low-frequency power). For all channels combined, total (-33+/-15%), delta(-51+/-22%), theta (-33+/-19%), and alpha (-26+/-16%) power decreased after the noxious stimulus (P<0.05); beta power was unchanged. The MRF unit responses to the noxious stimulus were significantly higher when the spinal cord isoflurane concentration was 0.3% (1,286+/-1,317 impulses/min) as compared with 1.2% (489+/-437 impulses/min, P<0.05).

CONCLUSIONS

Isoflurane blunted the EEG and MRF-thalamic response to noxious stimulation in part via an action in the spinal cord.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验