Suppr超能文献

Midazolam selectively potentiates the A(2A) - but not A1- receptor--mediated effects of adenosine: role of nucleoside transport inhibition and clinical implications.

作者信息

Seubert C N, Morey T E, Martynyuk A E, Cucchiara R F, Dennis D M

机构信息

Department of Anesthesiology, University of Florida College of Medicine, Gainesville 32610-0254, USA.

出版信息

Anesthesiology. 2000 Feb;92(2):567-77. doi: 10.1097/00000542-200002000-00041.

Abstract

BACKGROUND

Inhibition of adenosine metabolism offers a unique approach to harness the cardioprotective properties of adenosine in a site- and event-specific manner. Benzodiazepines inhibit adenosine metabolism by blocking nucleoside transporter. Therefore, the authors studied the binding affinities of structurally different benzodiazepines to nucleoside transporter and benzodiazepine-induced potentiation of A1-adenosine (negative dromotropy) and A2A-adenosine (coronary vasodilation) receptor-mediated effects.

METHODS

In membranes from porcine striatum and guinea pig ventricle, competition binding assays to displace [3H]nitrobenzylmercaptopurine riboside ([3H]NBMPR) from nucleoside transporter were performed using alprazolam, chlorodiazepoxide, diazepam, flurazepam, and midazolam. The augmentation by the most potent benzodiazepine of A1- and A2A-adenosine receptor-mediated responses, elicited by exogenous administration of adenosine or brief periods of global hypoxia, was subsequently studied in guinea pig Langendorff-perfused hearts.

RESULTS

All benzodiazepines completely displaced [3H]NBMPR in a concentration-dependent manner with Hill coefficients not significantly different from unity in both striatal and ventricular membranes. Midazolam was the most potent inhibitor of nucleoside transporter (ventricle:pKi = 5.22+/-0.41, Ki = 6 microM). In isolated hearts, midazolam (5, 10, 20 microM) significantly augmented coronary flow in a concentration-dependent manner in the presence of adenosine (30 nM), an effect reversed by ZM 241385, a selective A2A-receptor antagonist. In contrast, midazolam did not increase the effect of adenosine (30 nM) on atrioventricular conduction. Similarly, midazolam potentiated A2A- but not A1-receptor-mediated effects of endogenous adenosine released during hypoxia.

CONCLUSIONS

Structurally distinct benzodiazepines inhibit nucleoside transporter to different degrees. Midazolam selectively augments A2A- but not A1-receptor-mediated effects of adenosine by inhibiting nucleoside transporter.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验