Seubert C N, Morey T E, Martynyuk A E, Cucchiara R F, Dennis D M
Department of Anesthesiology, University of Florida College of Medicine, Gainesville 32610-0254, USA.
Anesthesiology. 2000 Feb;92(2):567-77. doi: 10.1097/00000542-200002000-00041.
Inhibition of adenosine metabolism offers a unique approach to harness the cardioprotective properties of adenosine in a site- and event-specific manner. Benzodiazepines inhibit adenosine metabolism by blocking nucleoside transporter. Therefore, the authors studied the binding affinities of structurally different benzodiazepines to nucleoside transporter and benzodiazepine-induced potentiation of A1-adenosine (negative dromotropy) and A2A-adenosine (coronary vasodilation) receptor-mediated effects.
In membranes from porcine striatum and guinea pig ventricle, competition binding assays to displace [3H]nitrobenzylmercaptopurine riboside ([3H]NBMPR) from nucleoside transporter were performed using alprazolam, chlorodiazepoxide, diazepam, flurazepam, and midazolam. The augmentation by the most potent benzodiazepine of A1- and A2A-adenosine receptor-mediated responses, elicited by exogenous administration of adenosine or brief periods of global hypoxia, was subsequently studied in guinea pig Langendorff-perfused hearts.
All benzodiazepines completely displaced [3H]NBMPR in a concentration-dependent manner with Hill coefficients not significantly different from unity in both striatal and ventricular membranes. Midazolam was the most potent inhibitor of nucleoside transporter (ventricle:pKi = 5.22+/-0.41, Ki = 6 microM). In isolated hearts, midazolam (5, 10, 20 microM) significantly augmented coronary flow in a concentration-dependent manner in the presence of adenosine (30 nM), an effect reversed by ZM 241385, a selective A2A-receptor antagonist. In contrast, midazolam did not increase the effect of adenosine (30 nM) on atrioventricular conduction. Similarly, midazolam potentiated A2A- but not A1-receptor-mediated effects of endogenous adenosine released during hypoxia.
Structurally distinct benzodiazepines inhibit nucleoside transporter to different degrees. Midazolam selectively augments A2A- but not A1-receptor-mediated effects of adenosine by inhibiting nucleoside transporter.
抑制腺苷代谢提供了一种独特的方法,能够以位点和事件特异性的方式利用腺苷的心脏保护特性。苯二氮䓬类药物通过阻断核苷转运体来抑制腺苷代谢。因此,作者研究了结构不同的苯二氮䓬类药物与核苷转运体的结合亲和力,以及苯二氮䓬类药物对A1-腺苷(负性变传导性)和A2A-腺苷(冠状动脉血管舒张)受体介导效应的增强作用。
在猪纹状体和豚鼠心室的膜中,使用阿普唑仑、氯氮䓬、地西泮、氟西泮和咪达唑仑进行竞争结合试验,以从核苷转运体上置换[3H]硝基苄基巯基嘌呤核糖苷([3H]NBMPR)。随后,在豚鼠Langendorff灌流心脏中研究了最有效的苯二氮䓬类药物对腺苷或短暂全脑缺氧引发的A1和A2A-腺苷受体介导反应的增强作用。
所有苯二氮䓬类药物均以浓度依赖性方式完全置换[3H]NBMPR,纹状体和心室膜中的希尔系数与1无显著差异。咪达唑仑是核苷转运体最有效的抑制剂(心室:pKi = 5.22±0.41,Ki = 6 microM)。在离体心脏中,咪达唑仑(5、10、20 microM)在腺苷(30 nM)存在下以浓度依赖性方式显著增加冠状动脉血流量,这种效应可被选择性A2A受体拮抗剂ZM 241385逆转。相比之下,咪达唑仑并未增加腺苷(30 nM)对房室传导的作用。同样,咪达唑仑增强了缺氧期间释放的内源性腺苷的A2A-而非A1-受体介导的效应。
结构不同的苯二氮䓬类药物对核苷转运体的抑制程度不同。咪达唑仑通过抑制核苷转运体选择性增强腺苷的A2A-而非A1-受体介导的效应。