Suppr超能文献

The transbilayer distribution of phospholipids in disc membranes is a dynamic equilibrium evidence for rapid flip and flop movement.

作者信息

Hessel E, Herrmann A, Müller P, Schnetkamp P P, Hofmann K P

机构信息

Institut für Medizinische Physik und Biophysik, Universitätsklinikum Charité, and Fachbereich Biologie/Biophysik, Mathematisch-Naturwissenschaftliche Fakultät I, Humboldt Universität zu Berlin, Berlin, Germany.

出版信息

Eur J Biochem. 2000 Mar;267(5):1473-83. doi: 10.1046/j.1432-1327.2000.01147.x.

Abstract

We studied the transbilayer redistribution of phospholipids in bovine rod outer segment membranes on thoroughly washed, Ficoll-floated osmotically intact disc vesicles; freshly prepared membranes separated from the disc stack by osmotic shock; and intact disc stacks with a permeabilized plasma membrane (A-discs, B-discs C-discs, respectively). In all cases, spin-labelled phospholipid analogues (SL-PL) with choline, serine and ethanolamine head groups (PtdCho, PtdSer and PtdEtn, respectively) were taken up into the outer leaflet of the membranes by > 90% and within less than 30 s after SL-PL addition, as deduced from the disappearance of spin-label from the suspension medium and from the specific ESR spectrum of membrane-associated spin-label. Using BSA extraction, the amount of SL-PL in the outer leaflet of the bilayer was determined. It decreased with a mean half-time of < 5 min at 25 degrees C, indicating rapid redistribution of all spin-labelled phospholipids into the inner leaflet of the disc membranes. After 1 h, PtdCho and PtdEtn were distributed almost symmetrically, whereas PtdSer was 35 : 65% (in/out). Using subsequent incubation with BSA, the outward movement (flop) of the analogues was observed directly, demonstrating that inward and outward movements proceed in thermodynamic equilibrium. No effect of N-ethylmaleimide or ATP on the redistribution could be measured, which makes it unlikely that energy-consuming translocase or flippase processes are involved in the redistribution in the dark. We reason that the solubilization zone around the photoreceptor rhodopsin may be the locus of rapid redistribution of the highly unsaturated disc phospholipid.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验