Suppr超能文献

Signaling of mechanical stretch in human keratinocytes via MAP kinases.

作者信息

Kippenberger S, Bernd A, Loitsch S, Guschel M, Müller J, Bereiter-Hahn J, Kaufmann R

机构信息

Department of Dermatology and Venerology, University Hospital, Frankfurt/Main, Germany.

出版信息

J Invest Dermatol. 2000 Mar;114(3):408-12. doi: 10.1046/j.1523-1747.2000.00915.x.

Abstract

Cells within human skin are permanently exposed to mechanical stretching. Here we present evidence that alterations in cell shape trigger biochemical signaling via MAP kinases in human keratinocytes. In an in vitro attempt we demonstrate a fast but transient activation of extracellular signal-regulated kinases 1/2 in response to cell stretch. This activation is reversed by preincubation with functional blocking antibodies directed towards beta1-integrins. As a second member of MAP kinases, stress-activated protein kinase/c-JUN NH2-terminal kinase was activated in a slower fashion, peaking at 1 h after the initial stimulus. The delay in signal transmission suggests that extracellular signal-regulated kinases 1/2 and stress-activated protein kinase/c-JUN NH2-terminal kinase do not share the same signaling pathway. p38 was not activated by cell stretching. The contribution of cytoskeletal elements in signal perception and transduction was evaluated by selective disruption of either actin filaments, microtubules, or keratin filaments but showed no clear effect on stretch-induced activation of extracellular signal-regulated kinases 1/2 and stress-activated protein kinase/c-JUN NH2-terminal kinase. In conclusion we found evidence of a cell-shape-dependent activation of MAP kinases in human keratinocytes disclosing beta1-integrins as putative mechano-transducers. It is likely that alterations of skin mechanics in vivo underlying pathogenic processes like wound formation and healing trigger physiologic responses via the MAP kinase pathway.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验