Mouledous L, Topham C M, Moisand C, Mollereau C, Meunier J C
Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, Unité Propre de Recherche 9062, Toulouse Cédex 4, France.
Mol Pharmacol. 2000 Mar;57(3):495-502. doi: 10.1124/mol.57.3.495.
A site-directed mutagenesis approach has been used to gain insight into the molecular events whereby the heptadecapeptide nociceptin binds and activates the opioid receptor-like 1 (ORL1) receptor, a G protein-coupled receptor. Alanine mutation, in the human ORL1 receptor, of transmembrane amino acid residues that are conserved in opioid receptors, Asp(130) and Tyr(131) in transmembrane segment (TM) III, Phe(220) and Phe(224) in TM V, and Trp(276) in TM VI, yields mutant receptors with reduced affinity, and proportionally decreased reactivity, toward nociceptin. Least to most deleterious in this respect are Ala substitutions of Phe(220) approximately W276A < Tyr(131) << Phe(224) </= Asp(130). The dramatic effects of the D130A mutation on nociceptin binding and activity are not reversed in the D130N mutant, whereas those of the Y131A mutation are totally suppressed in Y131F. This suggests that a negative charge at position 130, and a phenyl ring at position 131 in TM III, are critical for occupancy and/or activation of the receptor by nociceptin. Alanine replacement of glutamine 286, located at the C terminus of TM VI, yields a mutant receptor that binds nociceptin with nearly the same affinity as does the wild-type receptor (K(d) values of 0.13 and 0.22 nM, respectively) but, unlike the latter, is unable to mediate nociceptin inhibition of forskolin-induced cAMP synthesis in recombinant Chinese hamster ovary cells (ED(50) > 10,000 nM compared with 0.8 nM at the wild-type receptor). In all respects, this mutant receptor appears to be functionally inactive, indicating that residue Gln(286) may play a pivotal role in ORL1 receptor-mediated transduction of the nociceptin signal.
已采用定点诱变方法来深入了解十七肽孤啡肽结合并激活阿片受体样1(ORL1)受体(一种G蛋白偶联受体)的分子机制。在人ORL1受体中,对阿片受体中保守的跨膜氨基酸残基进行丙氨酸突变,即跨膜区(TM)III中的天冬氨酸(Asp)130和酪氨酸(Tyr)131、TM V中的苯丙氨酸(Phe)220和苯丙氨酸224以及TM VI中的色氨酸(Trp)276,产生了对孤啡肽亲和力降低且反应性成比例下降的突变受体。在这方面,从危害最小到最大依次为苯丙氨酸220的丙氨酸替代≈色氨酸276丙氨酸<酪氨酸131<<苯丙氨酸224≤天冬氨酸130。D130A突变对孤啡肽结合和活性的显著影响在D130N突变体中未得到逆转,而Y131A突变的影响在Y131F中被完全抑制。这表明TM III中位置130处的负电荷和位置131处的苯环对于孤啡肽占据和/或激活受体至关重要。位于TM VI C末端的谷氨酰胺286被丙氨酸替代,产生一种突变受体,其与孤啡肽结合的亲和力与野生型受体几乎相同(解离常数K(d)值分别为0.13和0.22 nM),但与野生型受体不同的是,它无法介导孤啡肽对重组中国仓鼠卵巢细胞中福斯高林诱导的环磷酸腺苷(cAMP)合成的抑制作用(半数有效剂量ED(50)>10,000 nM,而野生型受体为0.8 nM)。在各方面,这种突变受体似乎功能失活,表明残基谷氨酰胺286可能在ORL1受体介导的孤啡肽信号转导中起关键作用。