Suppr超能文献

基于结构的孤啡肽受体虚拟筛选:用于提高命中识别的混合对接和基于形状的方法。

Structure-based virtual screening of the nociceptin receptor: hybrid docking and shape-based approaches for improved hit identification.

机构信息

Astraea Therapeutics, LLC. , 320 Logue Avenue, Mountain View, California 94043, United States.

出版信息

J Chem Inf Model. 2014 Oct 27;54(10):2732-43. doi: 10.1021/ci500291a. Epub 2014 Sep 17.

Abstract

The antagonist-bound crystal structure of the nociceptin receptor (NOP), from the opioid receptor family, was recently reported along with those of the other opioid receptors bound to opioid antagonists. We recently reported the first homology model of the 'active-state' of the NOP receptor, which when docked with 'agonist' ligands showed differences in the TM helices and residues, consistent with GPCR activation after agonist binding. In this study, we explored the use of the active-state NOP homology model for structure-based virtual screening to discover NOP ligands containing new chemical scaffolds. Several NOP agonist and antagonist ligands previously reported are based on a common piperidine scaffold. Given the structure-activity relationships for known NOP ligands, we developed a hybrid method that combines a structure-based and ligand-based approach, utilizing the active-state NOP receptor as well as the pharmacophoric features of known NOP ligands, to identify novel NOP binding scaffolds by virtual screening. Multiple conformations of the NOP active site including the flexible second extracellular loop (EL2) loop were generated by simulated annealing and ranked using enrichment factor (EF) analysis and a ligand-decoy dataset containing known NOP agonist ligands. The enrichment factors were further improved by combining shape-based screening of this ligand-decoy dataset and calculation of consensus scores. This combined structure-based and ligand-based EF analysis yielded higher enrichment factors than the individual methods, suggesting the effectiveness of the hybrid approach. Virtual screening of the CNS Permeable subset of the ZINC database was carried out using the above-mentioned hybrid approach in a tiered fashion utilizing a ligand pharmacophore-based filtering step, followed by structure-based virtual screening using the refined NOP active-state models from the enrichment analysis. Determination of the NOP receptor binding affinity of a selected set of top-scoring hits resulted in identification of several compounds with measurable binding affinity at the NOP receptor, one of which had a new chemotype for NOP receptor binding. The hybrid ligand-based and structure-based methodology demonstrates an effective approach for virtual screening that leverages existing SAR and receptor structure information for identifying novel hits for NOP receptor binding. The refined active-state NOP homology models obtained from the enrichment studies can be further used for structure-based optimization of these new chemotypes to obtain potent and selective NOP receptor ligands for therapeutic development.

摘要

阿片受体家族中的孤啡肽受体(NOP)拮抗剂结合晶体结构最近与其他阿片受体拮抗剂结合的晶体结构一起被报道。我们最近报道了 NOP 受体“激活态”的首个同源模型,当与“激动剂”配体对接时,TM 螺旋和残基显示出不同,这与激动剂结合后 GPCR 的激活一致。在这项研究中,我们探索了使用 NOP 同源模型进行基于结构的虚拟筛选,以发现具有新化学支架的 NOP 配体。以前报道的几种 NOP 激动剂和拮抗剂配体都是基于常见的哌啶骨架。鉴于已知 NOP 配体的结构-活性关系,我们开发了一种混合方法,该方法结合了基于结构和基于配体的方法,利用 NOP 受体的激活态以及已知 NOP 配体的药效特征,通过虚拟筛选来识别新型 NOP 结合支架。通过模拟退火生成了包括灵活的第二细胞外环(EL2)环在内的 NOP 活性部位的多个构象,并使用富集因子(EF)分析和包含已知 NOP 激动剂配体的配体-诱饵数据集对其进行排序。通过对该配体-诱饵数据集进行基于形状的筛选并计算共识评分,进一步提高了富集因子。与单独的方法相比,这种基于结构和基于配体的 EF 分析的组合产生了更高的富集因子,这表明混合方法的有效性。使用上述混合方法,以分层方式对 CNS 可渗透 ZINC 数据库的子集进行虚拟筛选,首先使用基于配体药效团的过滤步骤进行筛选,然后使用来自富集分析的精炼 NOP 激活态模型进行基于结构的虚拟筛选。确定一组得分最高的命中物的 NOP 受体结合亲和力,结果鉴定出几种具有 NOP 受体可测量结合亲和力的化合物,其中一种具有 NOP 受体结合的新型化学型。基于配体和结构的混合方法证明了一种有效的虚拟筛选方法,该方法利用现有的 SAR 和受体结构信息来识别 NOP 受体结合的新型命中物。从富集研究中获得的精炼的 NOP 激活态同源模型可进一步用于这些新化学型的基于结构的优化,以获得用于治疗开发的有效且选择性的 NOP 受体配体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1f4/4210177/92d556f71ab6/ci-2014-00291a_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验