Hileman S M, Jackson G L
Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
J Reprod Fertil Suppl. 1999;54:231-42.
In males, including the ram, testosterone, acting via its primary metabolites oestradiol and dihydrotestosterone (DHT), suppresses circulating LH concentrations. This effect is due primarily, although not totally, to decreased frequency of gonadotrophin-releasing hormone (GnRH) pulses. The arcuate-ventromedial region (ARC-VMR) of the mediobasal hypothalamus and possibly the medial preoptic area (mPOA) are sites at which oestradiol acts to suppress GnRH, but the site of DHT action is not known. Given that native GnRH neurones appear to contain few or no oestrogen or androgen receptors, the effects of testosterone metabolites probably are exerted by modulating activity of inhibitory interneurone systems such as beta-endorphin, dopamine, and gamma-aminobutyric acid (GABA). Although beta-endorphin clearly inhibits GnRH secretion, the observation that testosterone treatment during a long-day photoperiod reduced proopiomelanocortin (POMC) mRNA in the arcuate nucleus while coincidentally suppressing GnRH release indicates that beta-endorphin does not mediate the inhibitory effect of testosterone on GnRH. Activation of GABAA receptors in either the mPOA or ARC-VMR suppressed LH, whereas activation of GABAB receptors in the ARC-VMR increased LH pulse amplitude. Therefore, it is suggested that GABA acts in both regions to regulate LH. Whereas testosterone affects GABA metabolism in the rat hypothalamus, its effect in the ram hypothalamus is yet to be determined. Testosterone treatment activated dopaminergic cells in the retrochiasmatic A15 area in the same animals in which it suppressed POMC mRNA in the arcuate nucleus. This dopaminergic system may partially mediate the negative feedback effect of testosterone in the ram analogous to its role in partially mediating the negative effect of oestrogen in the ewe. Future studies must concentrate on determining how these and other putative inhibitory neuronal systems interact and how they in turn are regulated by environmental factors such as photoperiod.
在雄性动物中,包括公羊,睾酮通过其主要代谢产物雌二醇和双氢睾酮(DHT)发挥作用,抑制循环中的促黄体生成素(LH)浓度。这种作用主要(尽管不是完全)是由于促性腺激素释放激素(GnRH)脉冲频率降低所致。下丘脑基底部的弓状腹内侧区域(ARC-VMR)以及可能的视前内侧区(mPOA)是雌二醇发挥作用抑制GnRH的部位,但DHT的作用部位尚不清楚。鉴于天然GnRH神经元似乎很少或不含有雌激素或雄激素受体,睾酮代谢产物的作用可能是通过调节抑制性中间神经元系统(如β-内啡肽、多巴胺和γ-氨基丁酸(GABA))的活性来实现的。尽管β-内啡肽明显抑制GnRH分泌,但在长日照光周期期间睾酮治疗可降低弓状核中阿黑皮素原(POMC)mRNA水平,同时抑制GnRH释放,这一观察结果表明β-内啡肽并不介导睾酮对GnRH的抑制作用。mPOA或ARC-VMR中GABAA受体的激活会抑制LH,而ARC-VMR中GABAB受体的激活会增加LH脉冲幅度。因此,有人认为GABA在这两个区域都发挥作用来调节LH。虽然睾酮会影响大鼠下丘脑的GABA代谢,但其在公羊下丘脑的作用尚待确定。在同一批动物中,睾酮治疗激活了视交叉后A15区域的多巴胺能细胞,同时它抑制了弓状核中的POMC mRNA。这个多巴胺能系统可能部分介导了睾酮在公羊中的负反馈作用,类似于它在部分介导母羊中雌激素的负作用所起的作用。未来的研究必须集中在确定这些和其他假定的抑制性神经元系统如何相互作用,以及它们如何反过来受到光周期等环境因素的调节。