Suppr超能文献

Recent advances in understanding the origin of the apoplastic oxidative burst in plant cells.

作者信息

Bolwell G P, Blee K A, Butt V S, Davies D R, Gardner S L, Gerrish C, Minibayeva F, Rowntree E G, Wojtaszek P

机构信息

Division of Biochemistry, School of Biological Sciences, Royal Holloway, University of London, Surrey, UK.

出版信息

Free Radic Res. 1999 Dec;31 Suppl:S137-45. doi: 10.1080/10715769900301431.

Abstract

The origin of the oxidative burst during plant-pathogen interactions remains controversial. A number of possibilities have been identified, which involve the protoplast, plasmalemma or apoplast. The apoplastic production of H2O2 requires three components, an extracellular peroxidase, ion fluxes leading to extracellular alkalinisation and release of a substrate. Fatty acids are the major compounds that appear in the apoplast following elicitation, which can activate H2O2 production by peroxidases in vitro. However, the reaction with peroxidases appears to be novel and is uncharacterised at present. The apoplastic mechanism also cannot be readily distinguished from the operation of a plasma membrane NADPH oxidase system by the use of the inhibitors diphenylene iodonium and N,N diethyl-dithiocarbamate since it is also inhibited by these. These inhibitors have often in the past been used to define the involvement of the latter in the oxidative burst. In common with the NADPH oxidase system, the peroxidase responsible has been cloned but unlike the NADPH oxidase it has been shown to function in vitro to generate H2O2. In vivo studies of the oxidative burst have shown that the alkalinisation is essential and the underlying ion fluxes may be regulated by cAMP. Calcium fluxes are also essential. Although the oxidative activity of peroxidase requires calcium the fluxes have obvious other function. These may include activation of release of substrate and through the activation of a CDPK, regulation of enzymes involved in phytoalexin and cell wall phenolic production such as PAL.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验